Suppr超能文献

基于深度卷积神经网络的射波刀治疗脑癌三维剂量预测:均匀组织的精确射束建模

Three-dimensional dose prediction based on deep convolutional neural networks for brain cancer in CyberKnife: accurate beam modelling of homogeneous tissue.

作者信息

Miao Yuchao, Ge Ruigang, Xie Chuanbin, Dai Xiangkun, Liu Yaoying, Qu Baolin, Li Xiaobo, Zhang Gaolong, Xu Shouping

机构信息

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.

出版信息

BJR Open. 2024 Aug 16;6(1):tzae023. doi: 10.1093/bjro/tzae023. eCollection 2024 Jan.

Abstract

OBJECTIVES

Accurate beam modelling is essential for dose calculation in stereotactic radiation therapy (SRT), such as CyberKnife treatment. However, the present deep learning methods only involve patient anatomical images and delineated masks for training. These studies generally focus on traditional intensity-modulated radiation therapy (RT) plans. Nevertheless, this paper aims to develop a deep CNN-based method for CyberKnife plan dose prediction about brain cancer patients. It utilized modelled beam information, target delineation, and patient anatomical information.

METHODS

This study proposes a method that adds beam information to predict the dose distribution of CyberKnife in brain cases. A retrospective dataset of 88 brain and abdominal cancer patients treated with the Ray-tracing algorithm was performed. The datasets include patients' anatomical information (planning CT), binary masks for organs at risk (OARs) and targets, and clinical plans (containing beam information). The datasets were randomly split into 68, 6, and 14 brain cases for training, validation, and testing, respectively.

RESULTS

Our proposed method performs well in SRT dose prediction. First, for the gamma passing rates in brain cancer cases, with the 2 mm/2% criteria, we got 96.7% ± 2.9% for the body, 98.3% ± 3.0% for the planning target volume, and 100.0% ± 0.0% for the OARs with small volumes referring to the clinical plan dose. Secondly, the model predictions matched the clinical plan's dose-volume histograms reasonably well for those cases. The differences in key metrics at the target area were generally below 1.0 Gy (approximately a 3% difference relative to the prescription dose).

CONCLUSIONS

The preliminary results for selected 14 brain cancer cases suggest that accurate 3-dimensional dose prediction for brain cancer in CyberKnife can be accomplished based on accurate beam modelling for homogeneous tumour tissue. More patients and other cancer sites are needed in a further study to validate the proposed method fully.

ADVANCES IN KNOWLEDGE

With accurate beam modelling, the deep learning model can quickly generate the dose distribution for CyberKnife cases. This method accelerates the RT planning process, significantly improves its operational efficiency, and optimizes it.

摘要

目的

精确的射束建模对于立体定向放射治疗(SRT)中的剂量计算至关重要,如射波刀治疗。然而,目前的深度学习方法仅涉及患者解剖图像和用于训练的勾画掩码。这些研究通常聚焦于传统的调强放射治疗(RT)计划。尽管如此,本文旨在开发一种基于深度卷积神经网络(CNN)的方法,用于预测脑癌患者的射波刀计划剂量。该方法利用了建模的射束信息、靶区勾画和患者解剖信息。

方法

本研究提出一种添加射束信息以预测脑部病例中射波刀剂量分布的方法。对88例采用射线追踪算法治疗的脑癌和腹部癌患者进行了回顾性数据集分析。数据集包括患者的解剖信息(计划CT)、危及器官(OARs)和靶区的二进制掩码,以及临床计划(包含射束信息)。数据集被随机分为68例、6例和14例脑部病例,分别用于训练、验证和测试。

结果

我们提出的方法在SRT剂量预测中表现良好。首先,对于脑癌病例中的伽马通过率,按照2毫米/2%的标准,相对于临床计划剂量,身体部位为96.7%±2.9%,计划靶区体积为98.3%±3.0%,小体积OARs为100.0%±0.0%。其次,对于这些病例,模型预测与临床计划的剂量体积直方图相当匹配。靶区关键指标的差异通常低于1.0戈瑞(相对于处方剂量约3%的差异)。

结论

所选14例脑癌病例的初步结果表明,基于均匀肿瘤组织的精确射束建模,可以实现射波刀治疗脑癌时精确的三维剂量预测。进一步研究需要更多患者和其他癌症部位来充分验证所提出的方法。

知识进展

通过精确的射束建模,深度学习模型可以快速生成射波刀病例的剂量分布。该方法加速了放疗计划过程,显著提高了其运行效率并进行了优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1978/11364489/05292648ec63/tzae023f1.jpg

相似文献

3
Deep Learning-Based Fluence Map Prediction for Pancreas Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost.
Adv Radiat Oncol. 2021 Feb 16;6(4):100672. doi: 10.1016/j.adro.2021.100672. eCollection 2021 Jul-Aug.
4
Fluence Map Prediction Using Deep Learning Models - Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy.
Front Artif Intell. 2020 Sep 8;3:68. doi: 10.3389/frai.2020.00068. eCollection 2020.
8
Noncoplanar VMAT for Brain Metastases: A Plan Quality and Delivery Efficiency Comparison With Coplanar VMAT, IMRT, and CyberKnife.
Technol Cancer Res Treat. 2019 Jan 1;18:1533033819871621. doi: 10.1177/1533033819871621.
10
Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT.
Med Phys. 2018 Oct;45(10):4763-4774. doi: 10.1002/mp.13122. Epub 2018 Sep 10.

本文引用的文献

1
Treatment plan prediction for lung IMRT using deep learning based fluence map generation.
Phys Med. 2022 Jul;99:44-54. doi: 10.1016/j.ejmp.2022.05.008. Epub 2022 May 21.
4
Dose prediction via distance-guided deep learning: Initial development for nasopharyngeal carcinoma radiotherapy.
Radiother Oncol. 2022 May;170:198-204. doi: 10.1016/j.radonc.2022.03.012. Epub 2022 Mar 26.
7
Is the CyberKnife radiosurgery system effective and safe for patients? An umbrella review of the evidence.
Future Oncol. 2022 May;18(14):1777-1791. doi: 10.2217/fon-2021-0844. Epub 2022 Feb 9.
9
Site-agnostic 3D dose distribution prediction with deep learning neural networks.
Med Phys. 2022 Mar;49(3):1391-1406. doi: 10.1002/mp.15461. Epub 2022 Jan 27.
10
Multi-constraint generative adversarial network for dose prediction in radiotherapy.
Med Image Anal. 2022 Apr;77:102339. doi: 10.1016/j.media.2021.102339. Epub 2021 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验