Suppr超能文献

利用机器学习势重新审视阿司匹林的多晶型稳定性

Revisiting Aspirin Polymorphic Stability Using a Machine Learning Potential.

作者信息

Hattori Shinnosuke, Zhu Qiang

机构信息

Advanced Research Laboratory, Research Platform, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi-shi 243-0014, Japan.

Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

出版信息

ACS Omega. 2024 Aug 19;9(34):36589-36599. doi: 10.1021/acsomega.4c04782. eCollection 2024 Aug 27.

Abstract

In this study, we present a systematic computational investigation to analyze the long-debated free energy stability of two well-known aspirin polymorphs, denoted as Form I and Form II. Specifically, we developed a strategy to collect training configurations covering diverse interatomic interactions between representative functional groups in aspirin crystals. Utilizing a state-of-the-art neural network interatomic potential (NNIP) model, we trained an accurate machine learning potential to simulate aspirin crystal dynamics under finite temperature conditions with ∼0.46 kJ/mol/molecule accuracy. Employing the trained NNIP model, we performed thermodynamic integration to assess the free energy difference between aspirins I and II, accounting for the anharmonic effects in a large supercell consisting of 512 molecules. For the first time, our results convincingly demonstrated that Form I is more stable than Form II at 300 K, ranging from 0.74 to 1.83 kJ/mol/molecule, aligning with experimental observations. Unlike the majority of previous simulations based on (quasi)harmonic approximations in a small super cell, which often found degenerate energies between aspirins I and II, our findings underscore the importance of anharmonic effects in determining polymorphic stability ranking. Furthermore, we proposed the use of the rotational degrees of freedom of methyl and ester/phenyl groups in aspirin crystals as characteristic motions to highlight rotational entropic contribution that favors the stability of Form I. From the structural perspective, we also found that the subtle free energy difference can be used to explain the distinct thermal expansion responses as observed in both experimental and simulation data. Beyond the aspirin polymorphism, we anticipate that such entropy-driven stabilization can be broadly applicable to many other organic systems, suggesting that our approach holds great promise for stability studies in small-molecule drug design.

摘要

在本研究中,我们进行了一项系统的计算研究,以分析两种著名的阿司匹林多晶型物(分别记为晶型I和晶型II)长期以来备受争议的自由能稳定性。具体而言,我们开发了一种策略来收集涵盖阿司匹林晶体中代表性官能团之间各种原子间相互作用的训练构型。利用先进的神经网络原子间势(NNIP)模型,我们训练了一个精确的机器学习势,以在有限温度条件下模拟阿司匹林晶体动力学,精度约为0.46 kJ/mol/分子。使用训练好的NNIP模型,我们进行了热力学积分,以评估阿司匹林I和II之间的自由能差,同时考虑了由512个分子组成的大超胞中的非谐效应。我们的结果首次令人信服地证明,在300 K时,晶型I比晶型II更稳定,自由能差在0.74至1.83 kJ/mol/分子之间,这与实验观察结果一致。与大多数先前基于小超胞中的(准)谐近似进行的模拟不同,那些模拟往往发现阿司匹林I和II之间的能量简并,我们的发现强调了非谐效应在确定多晶型稳定性排序中的重要性。此外,我们提出将阿司匹林晶体中甲基和酯基/苯基的旋转自由度用作特征运动,以突出有利于晶型I稳定性的旋转熵贡献。从结构角度来看,我们还发现这种微妙的自由能差可用于解释实验和模拟数据中观察到的不同热膨胀响应。除了阿司匹林多晶型之外,我们预计这种熵驱动的稳定性可广泛应用于许多其他有机系统,这表明我们的方法在小分子药物设计的稳定性研究中具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a56f/11360032/42e403aa9dba/ao4c04782_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验