Harvard University, Cambridge, MA, USA.
Robert Bosch LLC Research and Technology Center, Cambridge, MA, USA.
Nat Commun. 2023 Feb 3;14(1):579. doi: 10.1038/s41467-023-36329-y.
A simultaneously accurate and computationally efficient parametrization of the potential energy surface of molecules and materials is a long-standing goal in the natural sciences. While atom-centered message passing neural networks (MPNNs) have shown remarkable accuracy, their information propagation has limited the accessible length-scales. Local methods, conversely, scale to large simulations but have suffered from inferior accuracy. This work introduces Allegro, a strictly local equivariant deep neural network interatomic potential architecture that simultaneously exhibits excellent accuracy and scalability. Allegro represents a many-body potential using iterated tensor products of learned equivariant representations without atom-centered message passing. Allegro obtains improvements over state-of-the-art methods on QM9 and revMD17. A single tensor product layer outperforms existing deep MPNNs and transformers on QM9. Furthermore, Allegro displays remarkable generalization to out-of-distribution data. Molecular simulations using Allegro recover structural and kinetic properties of an amorphous electrolyte in excellent agreement with ab-initio simulations. Finally, we demonstrate parallelization with a simulation of 100 million atoms.
同时精确且计算高效地参数化分子和材料的势能表面是自然科学的长期目标。虽然基于原子中心的消息传递神经网络 (MPNN) 已经显示出了显著的准确性,但它们的信息传播限制了可访问的长度尺度。相反,局部方法可以扩展到大规模模拟,但准确性较差。这项工作引入了 Allegro,这是一种严格局部等变深度神经网络原子间势架构,同时具有出色的准确性和可扩展性。Allegro 使用学习的等变表示的迭代张量积来表示多体势,而无需基于原子中心的消息传递。Allegro 在 QM9 和 revMD17 上的表现优于最先进的方法。单层张量积的表现优于现有的深度 MPNN 和转换器在 QM9 上的表现。此外,Allegro 对离群数据显示出显著的泛化能力。使用 Allegro 的分子模拟可以很好地恢复非晶电解质的结构和动力学性质,与从头算模拟结果一致。最后,我们通过模拟 1 亿个原子来演示并行化。