Suppr超能文献

识别暴露混合物中有害成分的考量因素及针对性方法。

Considerations and targeted approaches to identifying bad actors in exposure mixtures.

作者信息

Keil Alexander P, O'Brien Katie M

机构信息

Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, 20850, MD, USA.

Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Durham, 27709, NC, USA.

出版信息

Stat Biosci. 2024 Jun;16(2):459-481. doi: 10.1007/s12561-023-09409-2. Epub 2023 Dec 12.

Abstract

Variable importance is a key statistical issue in exposure mixtures, as it allows a ranking of exposures as potential targets for intervention, and helps to identify bad actors within a mixture. In settings where mixtures have many constituents or high between-constituent correlations, estimators of importance can be subject to bias or high variance. Current approaches to assessing variable importance have major limitations, including reliance on overly strong or incorrect constraints or assumptions, excessive model extrapolation, or poor interpretability, especially regarding practical significance. We sought to overcome these limitations by applying an established doubly-robust, machine learning-based approach to estimating variable importance in a mixtures context. This method reduces model extrapolation, appropriately controls confounding, and provides both interpretability and model flexibility. We illustrate its use with an evaluation of the relationship between telomere length, a measure of biologic aging, and exposure to a mixture of polychlorinated biphenyls (PCBs), dioxins, and furans among 979 US adults from the National Health and Nutrition Examination Survey (NHANES). In contrast with standard approaches for mixtures, our approach selected PCB 180 and PCB 194 as important contributors to telomere length. We hypothesize that this difference could be due to residual confounding in standard methods that rely on variable selection. Further empirical evaluation of this method is needed, but it is a promising tool in the search for bad actors within a mixture.

摘要

变量重要性是暴露混合物中的一个关键统计问题,因为它能够对暴露因素进行排序,以确定潜在的干预目标,并有助于识别混合物中的有害成分。在混合物成分众多或成分间相关性较高的情况下,重要性估计量可能会出现偏差或高方差。当前评估变量重要性的方法存在重大局限性,包括依赖过度严格或错误的约束条件或假设、过度的模型外推,或可解释性差,尤其是在实际意义方面。我们试图通过应用一种既定的、基于机器学习的双重稳健方法来估计混合物背景下的变量重要性,以克服这些局限性。该方法减少了模型外推,适当地控制了混杂因素,并提供了可解释性和模型灵活性。我们通过评估来自美国国家健康与营养检查调查(NHANES)的979名美国成年人的端粒长度(一种生物衰老的度量指标)与多氯联苯(PCBs)、二噁英和呋喃混合物暴露之间的关系来说明其用途。与混合物的标准方法相比,我们的方法选择了PCB 180和PCB 194作为端粒长度的重要贡献因素。我们假设这种差异可能是由于依赖变量选择的标准方法中存在残余混杂因素。需要对该方法进行进一步的实证评估,但它是在混合物中寻找有害成分的一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1350/11364366/d306d1ea0b40/nihms-1969271-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验