Suppr超能文献

环境混合物中的部分效应:方法及影响的证据与指南

Partial Effects in Environmental Mixtures: Evidence and Guidance on Methods and Implications.

作者信息

Kamenetsky Maria E, Welch Barrett M, Bommarito Paige A, Buckley Jessie P, O'Brien Katie M, White Alexandra J, McElrath Thomas F, Cantonwine David E, Ferguson Kelly K, Keil Alexander P

机构信息

Occupational and Environmental Epidemiology, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, Maryland, USA.

School of Public Health, University of Nevada, Reno, Reno, Nevada, USA.

出版信息

Environ Health Perspect. 2025 May;133(5):57005. doi: 10.1289/EHP14942. Epub 2025 May 9.

Abstract

BACKGROUND

The effects of a mixture of exposures on health outcomes are of interest to public health but pose methodological hurdles. These exposures may impact the outcome in opposing ways, which we call the positive and negative partial effects of a mixture. There has been growing interest in estimating these partial effects and their ability to inform public health interventions.

OBJECTIVES

Methods like quantile g-computation (QGC) and weighted quantile sums regression (WQSr) were originally developed for estimating an overall mixture effect. These approaches, however, have not been comprehensively evaluated in their ability to estimate partial effects. We study the bias-variance tradeoffs of these approaches in estimating partial effects.

METHODS

We compare QGC with sample-splitting (QGCSS) and WQSr with sample-splitting (WQSSS) and new methods including ) QGC (QGCAP) and WQS (WQSAP), which use prior knowledge to determine the positive and negative exposures prior to partial effects estimation; ) model-averaging (QGC-MA); and ) elastic net to determine the split (QGC-Enet). We also considered WQSr with no sample-splitting (WQSNS), repeated holdout sets (RH-WQS), and two-index model with penalized weights (WQS2i). We compared performance under ) exposure correlations, ) varying sample sizes, ) spread in the negative effect across exposures, and ) imbalance in the partial effects.

RESULTS

Our simulation results showed that the estimation of negative and positive partial effects grows in root mean squared error and average bias as correlation among exposures increases, sample sizes shrink, the negative effect is spread over more exposures, or the imbalance between the negative and positive effects increases. Our results are demonstrated in two examples of mixtures in relation to oxidative stress biomarkers and telomere length.

DISCUSSION

Outside of having knowledge, no method is optimally reliable for estimating partial effects across common exposure scenarios. We provide guidance for practitioners of when partial effects might be most accurately estimated under particular settings. https://doi.org/10.1289/EHP14942.

摘要

背景

多种暴露因素的组合对健康结果的影响是公共卫生领域关注的问题,但也带来了方法学上的障碍。这些暴露因素可能以相反的方式影响结果,我们将其称为混合物的正向和负向部分效应。估计这些部分效应及其为公共卫生干预提供信息的能力的兴趣与日俱增。

目的

分位数g计算(QGC)和加权分位数和回归(WQSr)等方法最初是为估计总体混合物效应而开发的。然而,这些方法在估计部分效应的能力方面尚未得到全面评估。我们研究了这些方法在估计部分效应时的偏差-方差权衡。

方法

我们将QGC与样本分割法(QGCSS)进行比较,将WQSr与样本分割法(WQSSS)以及新方法进行比较,新方法包括:)QGC(QGCAP)和WQS(WQSAP),它们在估计部分效应之前利用先验知识确定正向和负向暴露因素;)模型平均法(QGC-MA);以及)使用弹性网络确定分割(QGC-Enet)。我们还考虑了不进行样本分割的WQSr(WQSNS)、重复留出集(RH-WQS)以及带惩罚权重的双指标模型(WQS2i)。我们在以下方面比较了性能:)暴露因素相关性;)不同样本量;)负效应在各暴露因素间的分布;以及)部分效应的不平衡性。

结果

我们的模拟结果表明,随着暴露因素间相关性增加、样本量缩小、负效应分布在更多暴露因素上或正负效应间的不平衡性增加,负向和正向部分效应估计的均方根误差和平均偏差都会增大。我们的结果在与氧化应激生物标志物和端粒长度相关的两种混合物示例中得到了证明。

讨论

除了具备专业知识外,在常见暴露场景下,没有一种方法在估计部分效应时是最优可靠的。我们为从业者提供了在特定设置下何时能最准确估计部分效应的指导。https://doi.org/10.1289/EHP14942

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/076f/12063793/3ff1cc9cece2/ehp14942_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验