Suppr超能文献

评估选择对两个物种杂交中形态特征的影响的机会。

Assessing the opportunity for selection to impact morphological traits in crosses between two species.

机构信息

Biology, Texas A&M University, College Station, Texas, United States.

Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States.

出版信息

PeerJ. 2024 Aug 28;12:e17985. doi: 10.7717/peerj.17985. eCollection 2024.

Abstract

Within biology, there have been long-standing goals to understand how traits impact fitness, determine the degree of adaptation, and predict responses to selection. One key step in answering these questions is to study the mode of gene action or genetic architecture of traits. The genetic architecture underlying a trait will ultimately determine whether selection can lead to a change in the phenotype. Theoretical and empirical research have shown that additive architectures are most responsive to selection. The genus offers a unique system to quantify the genetic architecture of traits. Crosses between and , which have evolved unique adaptive traits for very different environments, offer an opportunity to investigate the genetic architecture of a variety of morphological traits that often are not variable within species. We generated cohorts between strains of these two species and collected phenotypic data for eight morphological traits. The genetic architectures underlying these traits were estimated using an information-theoretic approach to line cross analysis. By estimating the genetic architectures of these traits, we were able to show a key role for maternal and epistatic effects and infer the accessibility of these traits to selection.

摘要

在生物学中,长期以来的目标是了解特征如何影响适应性,确定适应度的程度,并预测对选择的反应。回答这些问题的一个关键步骤是研究特征的基因作用模式或遗传结构。特征的遗传结构最终将决定选择是否能导致表型的改变。理论和经验研究表明,加性结构对选择的反应最敏感。属为量化特征的遗传结构提供了一个独特的系统。 和 之间的杂交,它们为非常不同的环境进化出了独特的适应性特征,提供了一个机会来研究通常在物种内没有变化的各种形态特征的遗传结构。我们在这两个 物种的品系之间产生了群体,并收集了八个形态特征的表型数据。使用线性杂交分析的信息理论方法来估计这些特征的遗传结构。通过估计这些特征的遗传结构,我们能够显示母体和上位效应的关键作用,并推断这些特征对选择的可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74eb/11365482/3306a5381b85/peerj-12-17985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验