Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington.
Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, Washington.
Magn Reson Med. 2025 Jan;93(1):384-396. doi: 10.1002/mrm.30283. Epub 2024 Sep 2.
To develop an automated deep learning model for MRI-based segmentation and detection of intracranial arterial calcification.
A novel deep learning model under the variational autoencoder framework was developed. A theoretically grounded dissimilarity loss was proposed to refine network features extracted from MRI and restrict their complexity, enabling the model to learn more generalizable MR features that enhance segmentation accuracy and robustness for detecting calcification on MRI.
The proposed method was compared with nine baseline methods on a dataset of 113 subjects and showed superior performance (for segmentation, Dice similarity coefficient: 0.620, area under precision-recall curve [PR-AUC]: 0.660, 95% Hausdorff Distance: 0.848 mm, Average Symmetric Surface Distance: 0.692 mm; for slice-wise detection, F1 score: 0.823, recall: 0.764, precision: 0.892, PR-AUC: 0.853). For clinical needs, statistical tests confirmed agreement between the true calcification volumes and predicted values using the proposed approach. Various MR sequences, namely T1, time-of-flight, and SNAP, were assessed as inputs to the model, and SNAP provided unique and essential information pertaining to calcification structures.
The proposed deep learning model with a dissimilarity loss to reduce feature complexity effectively improves MRI-based identification of intracranial arterial calcification. It could help establish a more comprehensive and powerful pipeline for vascular image analysis on MRI.
开发一种基于 MRI 的颅内动脉钙化分割和检测的自动化深度学习模型。
开发了一种新的基于变分自动编码器框架的深度学习模型。提出了一种理论基础上的不相似性损失,以细化从 MRI 中提取的网络特征,并限制其复杂性,使模型能够学习更具泛化性的 MRI 特征,从而提高钙化分割的准确性和鲁棒性。
该方法在 113 例患者的数据集上与 9 种基线方法进行了比较,表现出优越的性能(分割的 Dice 相似系数为 0.620,精度-召回曲线下面积 [PR-AUC]为 0.660,95%Hausdorff 距离为 0.848mm,平均对称表面距离为 0.692mm;逐片检测的 F1 分数为 0.823,召回率为 0.764,精度为 0.892,PR-AUC 为 0.853)。为了满足临床需求,统计检验证实了使用所提出的方法,真实钙化体积和预测值之间的一致性。评估了 T1、TOF 和 SNAP 等多种 MR 序列作为模型的输入,而 SNAP 提供了与钙化结构相关的独特而重要的信息。
所提出的具有不相似性损失的深度学习模型可以有效减少特征的复杂性,从而提高基于 MRI 的颅内动脉钙化识别。它可以帮助建立一个更全面和强大的血管 MRI 图像分析的管道。