Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA.
Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.
J Anim Ecol. 2024 Oct;93(10):1556-1566. doi: 10.1111/1365-2656.14168. Epub 2024 Sep 2.
Poleward and uphill range shifts are a common-but variable-response to climate change. We lack understanding regarding this interspecific variation; for example, functional traits show weak or mixed ability to predict range shifts. Characteristics of species' ranges may enhance prediction of range shifts. However, the explanatory power of many range characteristics-especially within-range abundance patterns-remains untested. Here, we introduce a hypothesis framework for predicting range-limit population trends and range shifts from the internal structure of the geographic range, specifically range edge hardness, defined as abundance within range edges relative to the whole range. The inertia hypothesis predicts that high edge abundance facilitates expansions along the leading range edge but creates inertia (either more individuals must disperse or perish) at the trailing range edge such that the trailing edge recedes slowly. In contrast, the limitation hypothesis suggests that hard range edges are the signature of strong limits (e.g. biotic interactions) that force faster contraction of the trailing edge but block expansions at the leading edge of the range. Using a long-term avian monitoring dataset from northern Minnesota, USA, we estimated population trends for 35 trailing-edge species and 18 leading-edge species and modelled their population trends as a function of range edge hardness derived from eBird data. We found limited evidence of associations between range edge hardness and range-limit population trends. Trailing-edge species with harder range edges were slightly more likely to be declining, demonstrating weak support for the limitation hypothesis. In contrast, leading-edge species with harder range edges were slightly more likely to be increasing, demonstrating weak support for the inertia hypothesis. These opposing results for the leading and trailing range edges might suggest that different mechanisms underpin range expansions and contractions, respectively. As data and state-of-the-art modelling efforts continue to proliferate, we will be ever better equipped to map abundance patterns within species' ranges, offering opportunities to anticipate range shifts through the lens of the geographic range.
极向和向上的分布区变化是对气候变化的常见反应,但存在变化。我们缺乏对这种种间变化的了解;例如,功能特征预测分布区变化的能力较弱或混合。物种分布区的特征可能会增强对分布区变化的预测。然而,许多分布区特征的解释能力——尤其是分布区内的丰富模式——仍未得到检验。在这里,我们引入了一个假设框架,用于从地理分布区的内部结构,特别是分布区边缘硬度,即分布区边缘的丰度相对于整个分布区来预测分布区极限种群趋势和分布区变化。惯性假说预测,高边缘丰度有利于在前沿分布区边缘扩张,但在尾部分布区边缘产生惯性(要么需要更多的个体扩散或死亡),从而使尾部分布区边缘缓慢退缩。相比之下,限制假说表明,硬边缘是强限制(如生物相互作用)的特征,这迫使尾部边缘更快收缩,但阻止分布区前沿的扩张。利用来自美国明尼苏达州北部的长期鸟类监测数据集,我们估计了 35 个尾部边缘物种和 18 个前沿边缘物种的种群趋势,并根据从 eBird 数据中得出的分布区边缘硬度来模拟它们的种群趋势。我们发现,分布区边缘硬度与分布区极限种群趋势之间的关联证据有限。分布区边缘较硬的尾部边缘物种略有可能下降,这为限制假说提供了微弱的支持。相比之下,分布区边缘较硬的前沿边缘物种略有可能增加,这为惯性假说提供了微弱的支持。这些前沿和尾部分布区边缘的相反结果可能表明,不同的机制分别支撑着分布区的扩张和收缩。随着数据和最先进的建模工作的不断增加,我们将能够更好地绘制物种分布区内的丰富模式,有机会通过地理分布区的视角来预测分布区的变化。