Suppr超能文献

在氧化稳定的TiCT MXene上原位构建双金属硒化物异质界面用于具有超快电荷转移动力学的锂存储。

In Situ Construction of Bimetallic Selenides Heterogeneous Interface on Oxidation-Stable TiCT MXene Toward Lithium Storage with Ultrafast Charge Transfer Kinetics.

作者信息

Wang Lei, Zhao Shasha, Zhang Xiong, Xu Yanan, An Yabin, Li Chen, Yi Sha, Liu Cong, Wang Kai, Sun Xianzhong, Zhang Haitao, Ma Yanwei

机构信息

Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Small. 2024 Nov;20(48):e2403078. doi: 10.1002/smll.202403078. Epub 2024 Sep 2.

Abstract

TiCT (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to TiCT-derived TiO at the heterogeneous interface between TiCT and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO on TiCT with metallic TiSe interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe and TiSe generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe/TiSe/TiCT heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe/TiSe/TiCT possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.

摘要

TiCT(MXene)作为一种优异的基底被广泛认可,可用于与过渡金属硫族化合物(TMCs)构建异质结构,以提升锂离子存储的电化学性能。然而,由于在TiCT与TMCs的异质界面处由TiCT衍生出TiO,传统合成策略不可避免地导致电化学电荷转移较差。在此,提出一种创新的原位硒化策略,用金属TiSe界面取代TiCT上原本生成的TiO,消除了由MXene氧化导致的缓慢电荷转移势垒的瓶颈。由CoSe和TiSe形成的双金属硒化物的构建产生本征电场,以引导异质界面中的快速离子扩散动力学。此外,通过实验和理论计算均证实了具有增强结构稳定性和改善倍率性能的CoSe/TiSe/TiCT异质结构。所设计的异质结构表现出超高的赝电容贡献(在0.1 mV s时为73.1%),使其非常适合弥补双层材料之间的动力学差异。基于CoSe/TiSe/TiCT组装的锂离子电容器具有高能量密度和超长寿命(在2 A g下10000次循环后为89.5%)。这种设计策略为利用MXene基底在具有超快电荷转移动力学的锂存储中的性能优势提供了一种可行的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验