Esporrín-Ubieto David, Huck-Iriart Cristián, Picco Agustin S, Beloqui Ana, Calderón Marcelo
POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain.
ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain.
Small. 2024 Nov;20(48):e2404097. doi: 10.1002/smll.202404097. Epub 2024 Sep 2.
Anisotropic gold nanoparticles (AuNPs) are renowned for their unique properties - including localized surface plasmon resonance (LSPR) and adjustable optical responses to light exposure - that enable the conversion of light into heat and make them a promising tool in cancer therapy. Nonetheless, their tendency to aggregate and consequently lose their photothermal conversion capacity during prolonged irradiation periods represents a central challenge in developing anisotropic AuNPs for clinical use. To overcome this issue, an innovative approach that facilitates the encapsulation of individual anisotropic AuNPs within thin nanogels, forming hybrid nanomaterials that mirror the inorganic core's morphology while introducing a negligible (2-8 nm) increase in overall diameter is proposed. The encapsulation of rod- and star-shaped anisotropic AuNPs within poly-acrylamide (pAA) or poly-(N-isopropylacrylamide) (pNIPAM) nanogels is successfully demonstrated. The ultrathin polymeric layers display remarkable durability, significantly enhancing the photothermal stability of anisotropic AuNPs during their interaction with near-infrared light and effectively boosting their photothermal capacities for extended irradiation periods. The outcomes of the research thus support the development of more stable and reliable AuNPs as hybrid nanomaterials, positioning them as promising nanomedicinal platforms.
各向异性金纳米颗粒(AuNPs)因其独特性质而闻名——包括局域表面等离子体共振(LSPR)以及对光照射的可调光学响应——这些性质能够将光转化为热,使其成为癌症治疗中一种有前景的工具。然而,在长时间照射期间,它们易于聚集并因此失去光热转换能力,这是开发用于临床的各向异性AuNPs的一个核心挑战。为克服这一问题,提出了一种创新方法,该方法有助于将单个各向异性AuNPs封装在薄纳米凝胶中,形成混合纳米材料,这种混合纳米材料反映了无机核心的形态,同时使总体直径增加可忽略不计(2 - 8纳米)。成功证明了棒状和星状各向异性AuNPs在聚丙烯酰胺(pAA)或聚(N - 异丙基丙烯酰胺)(pNIPAM)纳米凝胶中的封装。超薄聚合物层表现出显著的耐久性,在各向异性AuNPs与近红外光相互作用期间显著提高其光热稳定性,并在延长照射期间有效提高其光热能力。因此,该研究结果支持开发更稳定、可靠的作为混合纳米材料的AuNPs,将它们定位为有前景的纳米医学平台。