Suppr超能文献

迈向一种基于热响应水凝胶的表面等离子体生物传感器。

Toward a Plasmon-Based Biosensor throughout a Thermoresponsive Hydrogel.

作者信息

Parra Anne, Ahumada Óscar, Thon Andreas, Pini Valerio, Mingot Julia, Armelin Elaine, Alemán Carlos, Lanzalaco Sonia

机构信息

Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760, Madrid, Spain.

IMEM-BRT's Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, second floor, 08019, Barcelona, Spain.

出版信息

ACS Appl Polym Mater. 2024 Nov 1;6(22):13618-13629. doi: 10.1021/acsapm.4c02255. eCollection 2024 Nov 22.

Abstract

This study investigates the potential of thermoresponsive hydrogels as innovative substrates for future in vitro diagnostic (IVD) applications using AVAC technology, developed and patented by the Mecwins biomedical company. In order to convert the hydrogel in a substrate compatible with AVAC technology, the following prerequisites were established: (1) the hydrogel layer needs to be permeable to gold nanoparticles (AuNPs), and (2) the optical properties of the hydrogel should not interfere with the detection of AuNPs with AVAC technology. These two key aspects are evaluated in this work. A silicon substrate (Sil) was coated with a layer of a thermosensitive hydrogel (TSH) based on poly(-isopropylacrylamide--,'-methylene bis(acrylamide) (PNIPAAm--MBA). The TSH offers the advantage of easy modulation of its porosity through cross-linker adjustments, crucial for the plasmonic nanoparticle (NP) permeation. The platforms, denominated as (Sil)--(PNIPAAm--MBA), were fabricated by changing the cross-linker concentrations and exploring three deposition methods: drop casting (DC), spin coating (SC), and 3D printing (3D); the DC approach resulted in a very homogeneous and thin hydrogel layer, very suitable for the final application. Furthermore, after physical-chemical characterization, the TSH demonstrated its functionality in regulating nanoparticle absorption, and AVAC technology's capability to precisely identify such NPs through the hydrogel matrix was validated. The proposed hydrogel platform fulfills the initial requirements, opening the possibility for employing these hydrogels as dynamic substrates in sandwich immunoassay devices. The next step in the development of the hydrogel substrate would be its functionalization with biorecognition groups to allow for biomarker detection. By leveraging their enhanced capture efficiency and the ability to manipulate particle flow thermally, we anticipate a significant advancement in diagnostic methodologies, combining the spatial benefits of three-dimensional hydrogel structures with the precision of AVAC's digital detection.

摘要

本研究利用Mecwins生物医学公司开发并拥有专利的AVAC技术,研究了热响应水凝胶作为未来体外诊断(IVD)应用创新基质的潜力。为了将水凝胶转化为与AVAC技术兼容的基质,确定了以下先决条件:(1)水凝胶层需要对金纳米颗粒(AuNPs)具有渗透性,以及(2)水凝胶的光学性质不应干扰使用AVAC技术对AuNPs的检测。本工作对这两个关键方面进行了评估。在硅基底(Sil)上涂覆了一层基于聚(N-异丙基丙烯酰胺-N,N'-亚甲基双丙烯酰胺)(PNIPAAm-MBA)的热敏水凝胶(TSH)。TSH具有通过交联剂调整轻松调节其孔隙率的优点,这对于等离子体纳米颗粒(NP)的渗透至关重要。通过改变交联剂浓度并探索三种沉积方法:滴铸(DC)、旋涂(SC)和3D打印(3D),制备了称为(Sil)-(PNIPAAm-MBA)的平台;DC方法产生了非常均匀且薄的水凝胶层,非常适合最终应用。此外,经过物理化学表征后,TSH证明了其在调节纳米颗粒吸收方面的功能,并且验证了AVAC技术通过水凝胶基质精确识别此类NP的能力。所提出的水凝胶平台满足了初始要求,为在夹心免疫分析装置中使用这些水凝胶作为动态基质开辟了可能性。水凝胶基质开发的下一步将是用生物识别基团对其进行功能化,以实现生物标志物检测。通过利用其增强的捕获效率和热操纵颗粒流的能力,我们预计诊断方法将取得重大进展,将三维水凝胶结构的空间优势与AVAC数字检测的精度相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验