Suppr超能文献

NEK1 杂合性不足会加重 DNA 损伤,但不会影响 C9ORF72 患者来源的 iPSC 运动神经元中的纤毛生成缺陷。

NEK1 haploinsufficiency worsens DNA damage, but not defective ciliogenesis, in C9ORF72 patient-derived iPSC-motoneurons.

机构信息

Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy.

Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy.

出版信息

Hum Mol Genet. 2024 Nov 5;33(21):1900-1907. doi: 10.1093/hmg/ddae121.

Abstract

The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.

摘要

C9ORF72 基因中的六核苷酸 G4C2 重复扩展 (HRE) 是肌萎缩侧索硬化症 (ALS) 和额颞叶痴呆 (FTD) 的主要原因,导致功能丧失和获得功能的病理机制。C9ORF72 患者的广泛临床异质性表明存在潜在的修饰遗传和表观遗传因素。值得注意的是,C9ORF72 HRE 通常与 ALS/FTD 相关基因中的其他罕见变异共同发生,例如编码激酶的 NEK1,该激酶参与多种细胞途径,包括 DNA 损伤反应和纤毛发生。在这项研究中,我们从携带 C9ORF72 HRE 和 NEK1 功能丧失突变的 ALS 患者中生成诱导多能干细胞 (iPSC) 和分化运动神经元 (iPSC-MN),以研究 NEK1 杂合不足对 C9ORF72 病理学在多基因遗传条件下的生物学影响。与单突变 C9ORF72 细胞相比,双突变 C9ORF72/NEK1 细胞在 iPSC 中显示出更多的病理性 C9ORF72 RNA 焦点,在 iPSC-MN 中显示出更高的 DNA 损伤水平,但对 DNA 损伤反应没有影响。当我们分析初级纤毛时,我们观察到 C9ORF72 iPSC-MN 中的纤毛发生缺陷,而在双突变 iPSC-MN 中,NEK1 杂合不足并未使缺陷恶化。总之,我们的研究表明,NEK1 杂合不足在体外 ALS 患者来源的 C9ORF72 病理学疾病模型中以不同的方式影响 DNA 损伤和纤毛长度,可能在生物学水平上作为修饰因子发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验