Liu Shuo, Zhang Liang, Ma Boyang, Zeng Xiangyu, Liu Yang, Ma Zhi, Yang Zongyin, Wang Xiaozhi
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47808-47819. doi: 10.1021/acsami.4c05528. Epub 2024 Sep 2.
Antiambipolar heterojunctions are regarded as a revolutionary technology in the fields of electronics and optoelectronics, enabling the switch between positive and negative transconductance within a single device, which is crucial for diverse logic circuit applications. This study pioneers a mixed-dimensional photodetector featuring antiambipolar properties, facilitated by the van der Waals integration of one-dimensional CdSSe nanowires and two-dimensional Te nanosheets. This antiambipolar device enables flexible control over carrier transport via gate voltage, thus paving new paths for future optoelectronic devices. Furthermore, by precisely managing the stoichiometry of the ternary alloy CdSSe nanowires, fine-tuning of the nanowire band structure is achieved. This allows for customizable heterojunction band alignment (Type I and Type II), enabling adjustable band alignment. Through sophisticated band engineering, optimal Type II band alignment is achieved at the CdSSe/Te interface, significantly enhancing the device's photoelectric conversion efficiency through the synergistic effect of different dimensional materials. Exhibiting outstanding photoresponse across a broad spectral range from ultraviolet to near-infrared, especially under 450 nm illumination, the CdSSe/Te heterojunction photodetector demonstrates superior performance, including an impressive responsivity of 284 A W, a high detectivity of 1.07 × 10 Jones, an elevated external quantum efficiency of 7.83 × 10 %, and a swift response time of 11 μs. Ultimately, this customizable antiambipolar photodetector lays a solid foundation for the advancement of next-generation optoelectronic technologies.
反双极性异质结被视为电子和光电子领域的一项革命性技术,它能使单个器件在正跨导和负跨导之间切换,这对多种逻辑电路应用至关重要。本研究率先开发了一种具有反双极性特性的混合维度光电探测器,该探测器由一维CdSSe纳米线和二维Te纳米片通过范德华集成而成。这种反双极性器件能够通过栅极电压灵活控制载流子传输,从而为未来的光电器件开辟了新路径。此外,通过精确控制三元合金CdSSe纳米线的化学计量比,实现了纳米线能带结构的微调。这使得异质结能带排列(I型和II型)可定制,实现了可调的能带排列。通过复杂的能带工程,在CdSSe/Te界面实现了最佳的II型能带排列,通过不同维度材料的协同效应显著提高了器件的光电转换效率。CdSSe/Te异质结光电探测器在从紫外到近红外的宽光谱范围内表现出出色的光响应,尤其是在450 nm光照下,展现出卓越的性能,包括284 A W的令人印象深刻的响应度、1.07×10琼斯的高探测率、7.83×10%的高外量子效率以及11 μs的快速响应时间。最终,这种可定制的反双极性光电探测器为下一代光电子技术的发展奠定了坚实基础。