Hong Feiyang, Su Xinhao, Fang Yanjie, He Xinjia, Shan Bing
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou 310058, China.
J Am Chem Soc. 2024 Sep 11;146(36):25200-25210. doi: 10.1021/jacs.4c09052. Epub 2024 Sep 2.
For photoelectrodes to be used in practical catalytic applications, challenges exist in achieving the efficient production and transport of photogenerated charge-separated states. Analogous concepts in traditional inorganic photoelectrodes can be applied to their organic-polymer counterparts with improved charge-separation efficiencies. In this work, we develop photoconductive organic networks to form a high-performance photoelectrode for NO reduction to NH. In the integrated network, interfaces between the organic electron-donating photoconductor and electron-accepting catalyst can generate charge carriers efficiently upon illumination, leading to enhanced charge separation for photoelectrocatalysis. The photoelectrode network is capable of converting NO to NH at an external quantum efficiency of 13%. By coupling with a BiVO photoanode in tandem, the system reduces NO to NH and oxidizes HO to O simultaneously at Faradaic efficiencies of 95-98% with sustained photocurrents and production yields. Investigation of the photoconductive network by steady-state/time-resolved spectroscopies reveals the efficient generation and transport of free charge carriers in the photoelectrode, providing a basis for high photoelectrocatalytic performances.
对于要用于实际催化应用的光电极而言,在实现光生电荷分离态的高效产生和传输方面存在挑战。传统无机光电极中的类似概念可应用于电荷分离效率更高的有机聚合物光电极。在这项工作中,我们开发了光导有机网络,以形成用于将NO还原为NH₃的高性能光电极。在集成网络中,有机供电子光导体与电子接受催化剂之间的界面在光照下可有效产生电荷载流子,从而增强光电催化的电荷分离。该光电极网络能够以13%的外量子效率将NO转化为NH₃。通过与BiVO₄光阳极串联耦合,该系统以95 - 98%的法拉第效率同时将NO还原为NH₃并将H₂O氧化为O₂,同时具有持续的光电流和产率。通过稳态/时间分辨光谱对光导网络进行研究,揭示了光电极中自由电荷载流子的高效产生和传输,为高光电催化性能提供了基础。