Suppr超能文献

用于太阳能制氨的光电极中的静态有机p-n结,内量子效率达86%

Static Organic p-n Junctions in Photoelectrodes for Solar Ammonia Production with 86 % Internal Quantum Efficiency.

作者信息

Fang Yanjie, Li Mengjie, Gao Yifan, Wen Yingke, Shan Bing

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Hangzhou, 310058, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415729. doi: 10.1002/anie.202415729. Epub 2024 Oct 31.

Abstract

For photoelectrocatalytic cells, a limitation exists in finding appropriate photoelectrode configurations that couple efficient extraction of high-energy electrons from absorbed photons and selective catalysis. Here we report an organic p-n junction approach to fabricate molecular photoelectrodes for conversion of solar energy and nitrate into valuable ammonia product. Solar irradiation of the photoelectrode generates charge-separated states with electrons and holes spatially separated at the n-type and p-type components, as revealed by surface photovoltage mapping, at a quantum yield of 90 %. The high-flux photogenerated electrons are rapidly transferred to the catalyst for solar ammonia production from nitrate reduction at an external quantum efficiency (EQE) and an internal quantum efficiency (IQE) of 57 % and 86 %, respectively. Time-resolved spectroscopic studies reveal that the large IQE originates from the combined high efficiencies for photoelectron generation, catalyst activation and dark catalysis. In a flow-cell setup coupled with a silicon solar cell, the photoelectrode without bias generates photocurrent of 57 mA cm and ammonia at an EQE of 52 %.

摘要

对于光电催化电池而言,在寻找合适的光电极配置方面存在限制,这种配置既要能有效地从吸收的光子中提取高能电子,又要能进行选择性催化。在此,我们报告一种有机 p-n 结方法,用于制造将太阳能和硝酸盐转化为有价值氨产物的分子光电极。表面光电压映射显示,光电极在太阳能照射下会产生电荷分离态,电子和空穴在 n 型和 p 型组件中空间分离,量子产率为 90%。高通量光生电子迅速转移到催化剂上,用于通过硝酸盐还原生产太阳能氨,外部量子效率(EQE)和内部量子效率(IQE)分别为 57%和 86%。时间分辨光谱研究表明,高 IQE 源于光电子产生、催化剂活化和暗催化的综合高效率。在与硅太阳能电池耦合的流通池装置中,无偏压的光电极产生 57 mA cm 的光电流,氨的 EQE 为 52%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验