Suppr超能文献

5T、3T 和 1.5T 下肝脏脂肪定量的比较分析:一致性和可行性研究。

Comparative analysis of hepatic fat quantification across 5 T, 3 T and 1.5 T: A study on consistency and feasibility.

机构信息

Department of Radiology, Shandong Provincial Third Hospital: Shandong University Affiliated Shandong Provincial Third Hospital, Jinan 250031, China.

United Imaging Research Institute of Intelligent Imaging, Beijing 100089, China.

出版信息

Eur J Radiol. 2024 Nov;180:111709. doi: 10.1016/j.ejrad.2024.111709. Epub 2024 Aug 30.

Abstract

OBJECTIVES

Magnetic resonance imaging (MRI) is a critical noninvasive technique for evaluating liver steatosis, with efficient and precise fat quantification being essential for diagnosing liver diseases. This study leverages 5 T ultra-high-field MRI to demonstrate the clinical significance of liver fat quantification, and explores the consistency and accuracy of the Proton Density Fat Fraction (PDFF) in the liver across different magnetic field strengths and measurement methodologies.

METHODS

The study involved phantoms with lipid contents ranging from 0 % to 30 % and 35 participants (21 females, 14 males; average age 30.17 ± 13.98 years, body mass index 25.84 ± 4.76, waist-hip ratio 0.84 ± 0.09). PDFF measurements were conducted using chemical shift encoded (CSE) MRI at 5 T, 3 T, and 1.5 T, alongside magnetic resonance spectroscopy (MRS) at 5 T and 1.5 T for both liver and phantoms, analyzed using jMRUI software. The MRS-derived PDFF values served as the reference standard. Repeatability of 5 T MRI measurements was assessed through correlation analysis, while accuracy was evaluated using linear regression analysis against the reference standards.

RESULTS

The CSE-PDFF measurements at 5 T demonstrated strong consistency with those at 3 T and 1.5 T, showing high intraclass correlation coefficients (ICC) of 0.988 and 0.980, respectively (all p < 0.001). There was also significant consistency across ROIs within liver lobes, with ICC values ranging from 0.975 to 0.986 (all p < 0.001). MRS-PDFF measurements for both phantoms and liver at 5 T and 1.5 T exhibited substantial agreement, with ICC values of 0.996 and 0.980, respectively (all p < 0.001). Particularly, ICC values for ROIs in the liver ranged from 0.963 to 0.990 (all p < 0.001). Despite overall agreement, statistically significant differences were noted in specific ROIs within the liver lobes (p = 0.004 and 0.012). The CSE and MRS PDFF measurements at 5 T displayed strong consistency, with an ICC of 0.988 (p < 0.001), and significant agreement was also found between 5 T CSE and 1.5 T MRS PDFF measurements, with an ICC of 0.978 (p < 0.001). Agreement was significant within the ROIs of the liver lobes on the same platform at 5 T, with ICC values ranging from 0.986 to 0.991 (all p < 0.001).

CONCLUSION

PDFF measurements at 5 T MR imaging exhibited both accuracy and repeatability, indicating that 5 T imaging provides reliable quantification of liver fat content and shows substantial potential for clinical diagnostic applications.

摘要

目的

磁共振成像(MRI)是评估肝脂肪变性的关键无创技术,高效、精确的脂肪定量对于诊断肝脏疾病至关重要。本研究利用 5T 超高场 MRI 来证明肝脂肪定量的临床意义,并探讨不同磁场强度和测量方法下肝脏质子密度脂肪分数(PDFF)的一致性和准确性。

方法

本研究使用脂质含量在 0%至 30%之间的体模和 35 名参与者(21 名女性,14 名男性;平均年龄 30.17±13.98 岁,体重指数 25.84±4.76,腰臀比 0.84±0.09)。使用化学位移编码(CSE)MRI 在 5T、3T 和 1.5T 下进行 PDFF 测量,同时使用 5T 和 1.5T 的磁共振波谱(MRS)进行肝脏和体模的测量,使用 jMRUI 软件进行分析。MRS 衍生的 PDFF 值作为参考标准。通过相关分析评估 5T MRI 测量的重复性,通过线性回归分析评估与参考标准的准确性。

结果

5T 的 CSE-PDFF 测量结果与 3T 和 1.5T 具有很强的一致性,具有高的组内相关系数(ICC)为 0.988 和 0.980(均 p<0.001)。肝内不同 ROI 之间也具有显著的一致性,ICC 值范围为 0.975 至 0.986(均 p<0.001)。5T 和 1.5T 时,MRS-PDFF 测量值对肝脏和体模均具有很好的一致性,ICC 值分别为 0.996 和 0.980(均 p<0.001)。特别是,肝脏 ROI 的 ICC 值范围为 0.963 至 0.990(均 p<0.001)。尽管总体上有很好的一致性,但在特定的肝叶 ROI 中仍存在统计学上的显著差异(p=0.004 和 0.012)。5T 的 CSE 和 MRS PDFF 测量结果具有很强的一致性,ICC 为 0.988(p<0.001),5T 的 CSE 和 1.5T 的 MRS PDFF 测量结果之间也具有显著的一致性,ICC 为 0.978(p<0.001)。在同一平台上的肝叶 ROI 内具有很好的一致性,ICC 值范围为 0.986 至 0.991(均 p<0.001)。

结论

5T MRI 成像的 PDFF 测量结果既准确又具有可重复性,表明 5T 成像可为肝脂肪含量提供可靠的定量,并显示出在临床诊断应用中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验