Suppr超能文献

基于纳米酶整合入分子印迹聚合物的仿生协同策略用于改善酶催化模拟和选择性生物传感。

Bioinspired synergy strategy based on the integration of nanozyme into a molecularly imprinted polymer for improved enzyme catalytic mimicry and selective biosensing.

机构信息

Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.

Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.

出版信息

Biosens Bioelectron. 2024 Dec 15;266:116723. doi: 10.1016/j.bios.2024.116723. Epub 2024 Aug 29.

Abstract

Nanozymes offer many advantages such as good stability and high catalytic activity, but their selectivity is lower than that of enzymes. This is because most of enzymes have a protein component (apoenzyme) for substrate affinity to enhance selectivity and a non-protein element (coenzyme) for catalytic activity to improve sensitivity. The synergy between molecularly imprinted polymers (MIPs) and nanozymes can mimic natural enzymes, with MIP acting as the apoenzyme and nanozyme as the coenzyme. Despite researchers' attempts to associate MIPs with nanozymes, the full potential of this combination remains not well explored. This study addresses this gap by integrating FeO-Lys-Cu nanozymes with peroxidase-like catalytic activities within appropriate MIPs for L-DOPA and dopamine. The catalytic performance of the nanozyme was improved by the presence of Cu in FeO-Lys-Cu and further enhanced by MIP. Indeed, the exploration of the pre-concentration property of MIP has increased twenty-fold the catalytic activity of the nanozyme. Moreover, this synergistic combination facilitated the template removal process during MIP production by reducing the extraction time from several hours to just 1 min thanks to the addition of co-substrates which trigger the reaction with nanozyme and release the template. Overall, the synergistic combination of MIPs and nanozymes offers a promising avenue for the design of artificial enzymes.

摘要

纳米酶具有良好的稳定性和高催化活性等优点,但选择性低于酶。这是因为大多数酶都有一个蛋白质成分(脱辅基酶),用于增强底物亲和力以提高选择性,还有一个非蛋白质成分(辅酶),用于提高催化活性以提高灵敏度。分子印迹聚合物 (MIP) 和纳米酶的协同作用可以模拟天然酶,其中 MIP 作为脱辅基酶,纳米酶作为辅酶。尽管研究人员试图将 MIP 与纳米酶结合,但这种组合的全部潜力仍未得到充分探索。本研究通过将具有过氧化物酶样催化活性的 FeO-Lys-Cu 纳米酶整合到适当的 L-DOPA 和多巴胺 MIP 中,解决了这一差距。Cu 的存在提高了 FeO-Lys-Cu 纳米酶的催化性能,而 MIP 进一步增强了其催化性能。实际上,MIP 的预浓缩性能的探索使纳米酶的催化活性提高了二十倍。此外,由于添加了共底物,该共底物触发与纳米酶的反应并释放模板,从而将模板的提取时间从几个小时缩短到仅 1 分钟,这促进了 MIP 生产过程中的模板去除过程,从而实现了这种协同组合。总体而言,MIP 和纳米酶的协同组合为设计人工酶提供了一条有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验