Suppr超能文献

利用微生物协同作用:使用子空间-kNN 预测最佳协同体以提高微生物燃料电池的性能。

Leveraging microbial synergy: Predicting the optimal consortium to enhance the performance of microbial fuel cell using Subspace-kNN.

机构信息

Electrical Engineering Department, Institute of Technology, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.

Electrical Engineering Department, Institute of Technology, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.

出版信息

J Environ Manage. 2024 Oct;369:122252. doi: 10.1016/j.jenvman.2024.122252. Epub 2024 Sep 1.

Abstract

Microbial Fuel Cells (MFCs) are a sophisticated and advanced system that uses exoelectrogenic microorganisms to generate bioenergy. Predicting performance outcomes under experimental settings is challenging due to the intricate interactions that occur in mixed-species bioelectrochemical reactors like MFCs. One of the key factors that limit the MFC's performance is the presence of a microbial consortium. Traditionally, multiple microbial consortia are implemented in MFCs to determine the best consortium. This approach is laborious, inefficient, and wasteful of time and resources. The increase in the availability of soft computational techniques has allowed for the development of alternative strategies like artificial intelligence (AI) despite the fact that a direct correlation between microbial strain, microbial consortium, and MFC performance has yet to be established. In this work, a novel generic AI model based on subspace k-Nearest Neighbour (SS-kNN) is developed to identify and forecast the best microbial consortium from the constituent microbes. The SS-kNN model is trained with thirty-five different microbial consortia sharing different effluent properties. Chemical oxygen demand (COD) reduction, voltage generation, exopolysaccharide (EPS) production, and standard deviation (SD) of voltage generation are used as input features to train the SS-kNN model. The proposed SS-kNN model offers an accuracy of 100% during training period and 85.71% when it is tested with the data obtained from existing literature. The implementation of selected consortium (as predicted by SS-kNN model) improves the COD reduction capability of MFC by 15.67% than that of its constituent microbes which is experimentally verified. In addition, to prevent the effects of climate change and mitigate water pollution, the implementation of MFC technology ensures clean and green electricity. Consequently, achieving sustainable development goals (SDG) 6, 7, and 13.

摘要

微生物燃料电池(MFC)是一种复杂而先进的系统,它利用放电子微生物来产生生物能源。由于在混合物种生物电化学反应器(如 MFC)中发生的复杂相互作用,预测实验条件下的性能结果具有挑战性。限制 MFC 性能的一个关键因素是微生物群落的存在。传统上,在 MFC 中实施多个微生物群落以确定最佳群落。这种方法既费力又低效,浪费时间和资源。尽管尚未建立微生物菌株、微生物群落和 MFC 性能之间的直接相关性,但软计算技术的可用性增加使得可以开发人工智能(AI)等替代策略。在这项工作中,开发了一种基于子空间 k-最近邻(SS-kNN)的新型通用 AI 模型,用于从组成微生物中识别和预测最佳微生物群落。SS-kNN 模型使用 35 个具有不同流出物特性的不同微生物群落进行训练。化学需氧量(COD)减少、电压生成、胞外多糖(EPS)生成和电压生成的标准偏差(SD)被用作输入特征来训练 SS-kNN 模型。所提出的 SS-kNN 模型在训练期间提供了 100%的准确性,并且在使用从现有文献中获得的数据进行测试时提供了 85.71%的准确性。通过 SS-kNN 模型预测的选定群落的实施将 MFC 的 COD 减少能力提高了 15.67%,比其组成微生物的 COD 减少能力高,这在实验中得到了验证。此外,为了防止气候变化的影响并减轻水污染,实施 MFC 技术可确保清洁和绿色电力。因此,实现可持续发展目标(SDG)6、7 和 13。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验