Suppr超能文献

通过人工智能驱动的实验方法对大豆油的化学酶促环氧化进行逆向设计。

Inverse design of chemoenzymatic epoxidation of soyabean oil through artificial intelligence-driven experimental approach.

机构信息

Chemical Engineering & Process Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne VIC - 3001, Australia.

Chemical Engineering & Process Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

出版信息

Bioresour Technol. 2024 Nov;412:131405. doi: 10.1016/j.biortech.2024.131405. Epub 2024 Sep 1.

Abstract

This paper presents an inverse design methodology that utilizes artificial intelligence (AI)-driven experiments to optimize the chemoenzymatic epoxidation of soyabean oil using hydrogen peroxide and lipase (Novozym 435). First, experiments are conducted using a systematic 3-level, 5-factor Box-Behnken design to explore the effect of input parameters on oxirane oxygen content (OOC (%)). Based on these experiments, various AI models are trained, with the support vector regression (SVR) model being found to be the most accurate. SVR is then used as a fitness function in particle swarm optimization, and the suggested optimal conditions, upon experimental validation, resulted in a maximum OOC of 7.19 % (∼98.5 % relative conversion of oil to epoxy). The results demonstrate the superiority of the proposed approach over existing methods. This framework offers a general intensified process optimization strategy with minimal resource utilization that can be applied to any other process.

摘要

本文提出了一种利用人工智能(AI)驱动的实验来优化利用双氧水和脂肪酶(诺维信 435)对大豆油进行的化学酶促环氧化的逆向设计方法。首先,通过系统的 3 水平 5 因素 Box-Behnken 设计进行实验,以探究输入参数对环氧化物氧含量(OOC(%))的影响。基于这些实验,训练了各种 AI 模型,结果表明支持向量回归(SVR)模型最为准确。然后,SVR 被用作粒子群优化的适应度函数,在实验验证下,建议的最佳条件可使 OOC 达到最大值 7.19%(油到环氧的相对转化率约为 98.5%)。结果表明,所提出的方法优于现有方法。该框架提供了一种具有最小资源利用的通用强化过程优化策略,可应用于任何其他过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验