College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA.
Bioresour Technol. 2024 Nov;412:131404. doi: 10.1016/j.biortech.2024.131404. Epub 2024 Aug 31.
Photosynthetic biohybrid systems (PBSs) composed of semiconductor-microbial hybrids provide a novel approach for converting light into chemical energy. However, comprehending the intricate interactions between materials and microbes that lead to PBSs with high apparent quantum yields (AQY) is challenging. Machine learning holds promise in predicting these interactions. To address this issue, this study employs ensemble learning (ESL) based on Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting to predict AQY of PBSs utilizing a dataset comprising 15 influential factors. The ESL model demonstrates exceptional accuracy and interpretability (R value of 0.927), offering insights into the impact of these factors on AQY while facilitating the selection of efficient semiconductors. Furthermore, this research propose that efficient charge carrier separation and transfer at the bio-abiotic interface are crucial for achieving high AQY levels. This research provides guidance for selecting semiconductors suitable for productive PBSs while elucidating mechanisms underlying their enhanced efficiency.
光合生物杂化系统(PBSs)由半导体-微生物杂化体组成,为将光能转化为化学能提供了一种新方法。然而,理解导致具有高光量子产率(AQY)的 PBSs 的材料和微生物之间的复杂相互作用具有挑战性。机器学习在预测这些相互作用方面具有广阔的应用前景。为了解决这个问题,本研究采用基于随机森林、梯度提升决策树和极端梯度提升的集成学习(ESL)方法,利用包含 15 个有影响因素的数据集来预测 PBSs 的 AQY。ESL 模型表现出出色的准确性和可解释性(R 值为 0.927),提供了对这些因素对 AQY 影响的深入了解,同时促进了高效半导体的选择。此外,本研究提出在生物-仿生界面实现高效的电荷载流子分离和转移对于实现高光量子产率水平至关重要。这项研究为选择适合高效 PBSs 的半导体提供了指导,并阐明了其增强效率的机制。