Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Physiol Plant. 2024 Sep-Oct;176(5):e14516. doi: 10.1111/ppl.14516.
Wheat leaf rust, caused by the fungus Puccinia triticina (Pt), severely affects the grain quality and quantity of bread wheat (Triticum aestivum L.). Hairpin small(s)RNAs, like micro(mi)RNAs and their variants [including isomiRNAs (isomiRs) and microRNA-like RNAs (milRNAs)], along with their corresponding target genes, bestow leaf rust disease resistance, development and progression from both interacting species. However, the regulatory networks remain inadequately understood. Thirteen differentially expressed novel miRNAs, including two isomiRs and three milRNAs were discerned from induced reads of wheat sRNA libraries, and a further 5,393 and 1,275 candidate target genes were predicted in wheat and Pt, respectively. Functional annotation divulged that wheat-originated miRNAs/isomiRs were involved in resistance, while Pt-derived milRNAs imparted pathogenesis. The identified milRNAs- Tae-Pt-milR5, Tae-Pt-milR12, and Tae-Pt-milR14b and their cleavage sites on Pt target gene MEP5 were confirmed through degradome library screening, suggesting cross-kingdom translocation of Pt virulent genes in wheat host. Co-expression analysis of miRNAs/isomiRs-target genes provided insights into combating leaf rust disease, while co-expression analysis of milRNAs-target gene pairs reflected the extent of pathogenicity exerted by Pt with varied expression levels at the analyzed time points. The analysis pinpointed leaf rust-responsive candidate hairpin sRNAs- Tae-miR8, Tae-Pt-miR12, Tae-Pt-miR14a, and Tae-Pt-miR14b in wheat and Tae-Pt-milR12 in Pt. This study provides new insights into the hairpin sRNAs involved in the resistance and pathogenesis of wheat and Pt, respectively. Furthermore, crucial hairpin sRNAs and their promising targets for future biotechnological interventions to augment stress resilience have been identified.
小麦叶锈病由真菌 Puccinia triticina (Pt)引起,严重影响面包小麦 (Triticum aestivum L.) 的粮食产量和质量。发夹小(s)RNAs,如 micro(mi)RNAs 及其变体[包括 isomiRs (isomiRs) 和 microRNA-like RNAs (milRNAs)],以及它们对应的靶基因,赋予小麦对叶锈病的抗性、发育和进展,来自相互作用的物种。然而,调控网络仍未得到充分理解。从小麦 sRNA 文库的诱导读长中鉴定出 13 个差异表达的新型 miRNA,包括两个 isomiRs 和三个 milRNAs,分别在小麦和 Pt 中预测到 5393 和 1275 个候选靶基因。功能注释表明,小麦来源的 miRNA/isomiRs 参与了抗性,而 Pt 来源的 milRNAs 赋予了致病性。鉴定的 milRNAs-Tae-Pt-milR5、Tae-Pt-milR12 和 Tae-Pt-milR14b 及其在 Pt 靶基因 MEP5 上的切割位点通过降解组文库筛选得到验证,表明 Pt 毒力基因在小麦宿主中的跨域转移。miRNA/isomiRs-靶基因的共表达分析提供了对抗叶锈病的见解,而 milRNAs-靶基因对的共表达分析反映了 Pt 在不同表达水平下在分析时间点施加的致病性程度。该分析确定了小麦中与叶锈病反应相关的候选发夹 sRNAs-Tae-miR8、Tae-Pt-miR12、Tae-Pt-miR14a 和 Tae-Pt-miR14b 以及 Pt 中的 Tae-Pt-milR12。本研究分别为小麦和 Pt 中参与抗性和发病机制的发夹 sRNAs 提供了新的见解。此外,还鉴定了关键的发夹 sRNAs 及其有希望的靶标,为未来通过生物技术干预增强应激恢复能力提供了依据。