Suppr超能文献

在环境条件下实现单纳米粒子等离子体激元和分子激子之间的强光物质相互作用。

Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions.

机构信息

Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.

Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland.

出版信息

Phys Rev Lett. 2015 Apr 17;114(15):157401. doi: 10.1103/PhysRevLett.114.157401. Epub 2015 Apr 15.

Abstract

Realizing strong light-matter interactions between individual two-level systems and resonating cavities in atomic and solid state systems opens up possibilities to study optical nonlinearities on a single-photon level, which can be useful for future quantum information processing networks. However, these efforts have been hampered by unfavorable experimental conditions, such as cryogenic temperatures and ultrahigh vacuum, required to study such systems and phenomena. Although several attempts to realize strong light-matter interactions at room temperature using plasmon resonances have been made, successful realizations on the single-nanoparticle level are still lacking. Here, we demonstrate the strong coupling between plasmons confined within a single silver nanoprism and excitons in molecular J aggregates at ambient conditions. Our findings show that deep subwavelength mode volumes V together with quality factors Q that are reasonably high for plasmonic nanostructures result in a strong-coupling figure of merit-Q/sqrt[V] as high as ∼6×10^{3}  μm^{-3/2}, a value comparable to state-of-the-art photonic crystal and microring resonator cavities. This suggests that plasmonic nanocavities, and specifically silver nanoprisms, can be used for room temperature quantum optics.

摘要

在原子和固态系统中,实现单个二能级系统与共振腔之间的强光物质相互作用,为在单光子水平上研究光学非线性开辟了可能性,这对未来的量子信息处理网络可能很有用。然而,这些努力受到了不利的实验条件的阻碍,例如研究此类系统和现象所需的低温和超高真空。尽管已经有几项在室温下利用等离子体共振实现强光物质相互作用的尝试,但在单个纳米粒子水平上的成功实现仍然缺乏。在这里,我们在环境条件下证明了单个银纳米棱镜内的等离子体和分子 J 聚集体中的激子之间的强耦合。我们的研究结果表明,深亚波长模式体积 V 与等离子体纳米结构相当高的品质因数 Q 相结合,导致强耦合品质因数 Q/√[V]高达约 6×10^{3}μm^{-3/2},与最先进的光子晶体和微环谐振器腔相当。这表明等离子体纳米腔,特别是银纳米棱镜,可用于室温量子光学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验