Suppr超能文献

中国“动态清零”政策结束时 COVID-19 波的多维流行病学和信息学数据。

Multi-dimensional epidemiology and informatics data on COVID-19 wave at the end of zero COVID policy in China.

机构信息

Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China.

Shantou University Medical College, Shantou, China.

出版信息

Front Public Health. 2024 Aug 19;12:1442728. doi: 10.3389/fpubh.2024.1442728. eCollection 2024.

Abstract

BACKGROUND

China exited strict Zero-COVID policy with a surge in Omicron variant infections in December 2022. Given China's pandemic policy and population immunity, employing Baidu Index (BDI) to analyze the evolving disease landscape and estimate the nationwide pneumonia hospitalizations in the post Zero COVID period, validated by hospital data, holds informative potential for future outbreaks.

METHODS

Retrospective observational analyses were conducted at the conclusion of the Zero-COVID policy, integrating internet search data alongside offline records. Methodologies employed were multidimensional, encompassing lagged Spearman correlation analysis, growth rate assessments, independent sample T-tests, Granger causality examinations, and Bayesian structural time series (BSTS) models for comprehensive data scrutiny.

RESULTS

Various diseases exhibited a notable upsurge in the BDI after the policy change, consistent with the broader trajectory of the COVID-19 pandemic. Robust connections emerged between COVID-19 and diverse health conditions, predominantly impacting the respiratory, circulatory, ophthalmological, and neurological domains. Notably, 34 diseases displayed a relatively high correlation (r > 0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 1,332%. In these 34 diseases, causal relationships have been confirmed for 23 of them, while 28 garnered validation from hospital-based evidence. Notably, 19 diseases obtained concurrent validation from both Granger causality and hospital-based data. Finally, the BSTS models approximated approximately 4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 months subsequent to the policy relaxation.

CONCLUSION

This investigation elucidated substantial associations between COVID-19 and respiratory, circulatory, ophthalmological, and neurological disorders. The outcomes from comprehensive multi-dimensional cross-over studies notably augmented the robustness of our comprehension of COVID-19's disease spectrum, advocating for the prospective utility of internet-derived data. Our research highlights the potential of Internet behavior in predicting pandemic-related syndromes, emphasizing its importance for public health strategies, resource allocation, and preparedness for future outbreaks.

摘要

背景

2022 年 12 月,奥密克戎变异株感染导致中国取消严格的“动态清零”政策。鉴于中国的疫情政策和人群免疫力,利用百度指数(BDI)分析疫情演变并预测“动态清零”政策结束后的全国肺炎住院人数,该方法结合了医院数据,具有为未来疫情爆发提供信息的潜力。

方法

“动态清零”政策结束后,我们进行了回顾性观察分析,将互联网搜索数据与线下记录相结合。使用了多种方法,包括滞后 Spearman 相关分析、增长率评估、独立样本 T 检验、格兰杰因果检验和贝叶斯结构时间序列(BSTS)模型,对数据进行全面分析。

结果

政策变化后,BDI 中各种疾病显著增加,与 COVID-19 大流行的总体趋势一致。COVID-19 与多种健康状况之间存在明显关联,主要影响呼吸、循环、眼科和神经领域。值得注意的是,有 34 种疾病与 COVID-19 的相关性较高(r>0.5)。其中,12 种疾病在政策转变后增长率超过 50%,心肌炎增长 1708%,肺炎增长 1332%。在这 34 种疾病中,有 23 种疾病的因果关系得到了确认,其中 28 种疾病得到了基于医院的证据的验证。值得注意的是,19 种疾病同时得到了格兰杰因果关系和基于医院的证据的验证。最后,BSTS 模型估计在政策放松后的两个月内,全国范围内有 4332655 例肺炎住院患者。

结论

本研究阐明了 COVID-19 与呼吸、循环、眼科和神经系统疾病之间的密切关联。全面多维交叉研究的结果显著提高了我们对 COVID-19 疾病谱的理解,为利用互联网数据提供了依据。我们的研究强调了互联网行为在预测大流行相关综合征方面的潜力,为公共卫生策略、资源分配和为未来疫情爆发做好准备提供了重要依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2488/11366567/7d3eb9972b2d/fpubh-12-1442728-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验