Lin Qiang, Xie An, Zeng Xianwu, Cao Yongchun, Man Zhengxing, Hao Yusheng, Liu Caihong, Huang Xiaodi
School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, China.
Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, China.
Med Phys. 2024 Dec;51(12):8915-8928. doi: 10.1002/mp.17368. Epub 2024 Sep 3.
Deep learning is the primary method for conducting automated analysis of SPECT bone scintigrams. The lack of available large-scale data significantly hinders the development of well-performing deep learning models, as the performance of a deep learning model is positively correlated with the size of the dataset used. Therefore, there is an urgent demand for an automated data generation method to enlarge the dataset of SPECT bone scintigrams.
We introduce a deep learning-based generation model that can generate realistic but not identical samples from the original SPECT bone scintigrams.
Following the generative adversarial learning architecture, a bone metastasis scintigram generation model christened BMS-Gen is proposed. First, BMS-Gen takes multiple input conditions and employs multi-receptive field learning to ensure that the generated samples are as realistic as possible. Second, BMS-Gen adopts generative adversarial learning to retain the diversity of the generated samples. Last, BMS-Gen uses a two-stage training strategy to improve the quality of the generated samples.
Experimental evaluation conducted on a set of clinical data of SPECT BM scintigrams has shown the performance of the proposed BMS-Gen, achieving the best overall scores of 1678.0, 69.33, and 19.51 for FID (Fréchet Inception Distance), MSE (Mean Square Error), and PSNR (Peak Signal-to-Noise Ratio) metrics. The introduction of samples generated by BMS-Gen contributes a maximum (minimum) increase of 3.01% (0.15%) on the F-1 score and a maximum (minimum) increase of 6.83% (2.21%) on the DSC score for the image classification and segmentation tasks, respectively.
The proposed BMS-Gen model can be used as a promising tool for augmenting the data of bone scintigrams, greatly facilitating the development of deep learning-based automated analysis of SPECT bone scintigrams.
深度学习是对SPECT骨闪烁图进行自动分析的主要方法。由于深度学习模型的性能与所用数据集的大小呈正相关,缺乏可用的大规模数据严重阻碍了性能良好的深度学习模型的开发。因此,迫切需要一种自动数据生成方法来扩大SPECT骨闪烁图的数据集。
我们引入一种基于深度学习的生成模型,该模型可以从原始SPECT骨闪烁图生成逼真但不相同的样本。
遵循生成对抗学习架构,提出了一种名为BMS-Gen的骨转移闪烁图生成模型。首先,BMS-Gen采用多个输入条件并运用多感受野学习,以确保生成的样本尽可能逼真。其次,BMS-Gen采用生成对抗学习来保持生成样本的多样性。最后,BMS-Gen使用两阶段训练策略来提高生成样本的质量。
对一组SPECT骨转移闪烁图的临床数据进行的实验评估显示了所提出的BMS-Gen的性能,在FID(弗雷歇因距离)、MSE(均方误差)和PSNR(峰值信噪比)指标上分别取得了1678.0、69.33和19.51的最佳总体分数。对于图像分类和分割任务,引入BMS-Gen生成的样本分别使F-1分数最大(最小)提高3.01%(0.15%),DSC分数最大(最小)提高6.83%(2.21%)。
所提出的BMS-Gen模型可作为一种有前景的工具来扩充骨闪烁图数据,极大地促进基于深度学习的SPECT骨闪烁图自动分析的发展。