Suppr超能文献

交互式分割,用于从低分辨率、大尺寸骨闪烁扫描图中准确分离转移灶。

Interactive segmentation for accurately isolating metastatic lesions from low-resolution, large-size bone scintigrams.

作者信息

Ma Xiaoqiang, Lin Qiang, Zeng Xianwu, Cao Yongchun, Man Zhengxing, Liu Caihong, Huang Xiaodi

机构信息

Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, People's Republic of China.

School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, People's Republic of China.

出版信息

Phys Med Biol. 2025 Feb 6;70(4). doi: 10.1088/1361-6560/adaf07.

Abstract

Bone is a common site for the metastasis of malignant tumors, and single photon emission computed tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation. While computer-aided diagnosis systems have the potential to improve diagnostic efficiency, fully automated segmentation approaches frequently suffer from high false positive rates, limiting their clinical utility.This study proposes an interactive segmentation framework for SPECT images, leveraging the deep convolutional neural networks to enhance segmentation accuracy. The proposed framework incorporates a U-shaped backbone network that effectively addresses inter-patient variability, along with an interactive attention module that enhances feature extraction in densely packed bone regions.Extensive experiments using clinical data validate the effectiveness of the proposed framework. Furthermore, a prototype tool was developed based on this framework to assist in the clinical segmentation of metastatic bone lesions and to support the creation of a large-scale dataset for bone metastasis segmentation.In this study, we proposed an interactive segmentation framework for metastatic lesions in bone scintigraphy to address the challenging task of labeling low-resolution, large-size SPECT bone scans. The experimental results show that the model can effectively segment the bone metastases of lung cancer interactively. In addition, the prototype tool developed based on the model has certain clinical application value.

摘要

骨是恶性肿瘤转移的常见部位,单光子发射计算机断层扫描(SPECT)被广泛用于检测这些转移灶。在SPECT图像中准确勾勒出转移性骨病变对于制定治疗方案至关重要。然而,目前的临床实践依赖于医生的手动勾勒,这容易出现变异性和主观解释。虽然计算机辅助诊断系统有提高诊断效率的潜力,但全自动分割方法常常有较高的假阳性率,限制了它们的临床实用性。本研究提出了一种用于SPECT图像的交互式分割框架,利用深度卷积神经网络提高分割精度。所提出的框架包含一个U形主干网络,可有效解决患者间的变异性,以及一个交互式注意力模块,可增强在密集骨区域的特征提取。使用临床数据进行的大量实验验证了所提出框架的有效性。此外,基于该框架开发了一个原型工具,以协助转移性骨病变的临床分割,并支持创建用于骨转移分割的大规模数据集。在本研究中,我们提出了一种用于骨闪烁显像中转移性病变的交互式分割框架,以解决标记低分辨率、大尺寸SPECT骨扫描这一具有挑战性的任务。实验结果表明,该模型能够有效地交互式分割肺癌的骨转移灶。此外,基于该模型开发的原型工具具有一定的临床应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验