Suppr超能文献

基于多孔异质结空心 NiCo-LDH/TiCT MXenes 复合材料的电化学传感器用于天然植物中槲皮素的检测。

An electrochemical sensor based on porous heterojunction hollow NiCo-LDH/TiCT MXenes composites for the detection of quercetin in natural plants.

机构信息

School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, People's Republic of China.

Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang, 413000, Hunan, People's Republic of China.

出版信息

Mikrochim Acta. 2024 Sep 3;191(10):572. doi: 10.1007/s00604-024-06643-3.

Abstract

Cubic hollow-structured NiCo-LDH was synthesized using a solvothermal method. Subsequently, clay-like TiCT MXenes were electrostatically self-assembled with NiCo layered double hydroxides (NiCo-LDH) to form composites featuring three-dimensional porous heterostructures. The composites were characterized using SEM, TEM, XRD, XPS, and FT-IR spectroscopy. TiCT MXenes exhibit excellent electrical conductivity and hydrophilicity, providing abundant binding sites for NiCo-LDH, thereby promoting an increase in ion diffusion channels. The formation of three-dimensional porous heterostructural composites enhances charge transport, significantly improving sensor sensitivity and response speed. Consequently, the sensor demonstrates excellent electrochemical detection capability for quercetin (Qu), with a detection range of 0.1-20 µM and a detection limit of 23 nM. Additionally, it has been applied to the detection of Qu in natural plants such as onion, golden cypress, and chrysanthemum. The recovery ranged from 97.6 to 102.28%.

摘要

采用溶剂热法合成了立方中空结构的 NiCo-LDH。随后,粘土状的 TiCT MXenes 与 NiCo 层状双氢氧化物(NiCo-LDH)通过静电自组装形成具有三维多孔异质结构的复合材料。通过 SEM、TEM、XRD、XPS 和 FT-IR 光谱对复合材料进行了表征。TiCT MXenes 表现出优异的导电性和亲水性,为 NiCo-LDH 提供了丰富的结合位点,从而促进了离子扩散通道的增加。三维多孔异质结构复合材料的形成增强了电荷传输,显著提高了传感器的灵敏度和响应速度。因此,该传感器对槲皮素(Qu)具有出色的电化学检测能力,检测范围为 0.1-20 μM,检测限为 23 nM。此外,它已被应用于洋葱、金柏和菊花等天然植物中 Qu 的检测。回收率在 97.6%至 102.28%之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验