Han Jing, Xu Bingang, Fang Cuiqin, Wei Juyang, Li Zihua, Liu Xinlong, Yang Yujue, Wang Qian, Zhang Junze
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong.
Adv Sci (Weinh). 2025 Jul;12(25):e2500835. doi: 10.1002/advs.202500835. Epub 2025 Apr 25.
With the rapid development of wearable electronic devices, the demand for flexible, durable, and high-performance energy storage systems has increased significantly. Nevertheless, maintaining stable electrochemical performance during stretching while ensuring high stretchability and mechanical stability remains a challenge. Herein, this study proposes a novel type of stretchable supercapacitors made from carbon nanotube (CNT) and styrene-butadiene-styrene (SBS) composite scaffolds prepared on pre-stretched carbon fabrics using the breath figure method. Hydrothermal treatment is then performed to grow NiCo-LDH at the treated carbon fabrics. This method induces the formation of a hierarchically porous structure under high humidity conditions, controls the hydrothermal growth of NiCo-LDH in the CNT/SBS composite scaffold, and significantly enhances the electrochemical performance and mechanical stability. The supercapacitor demonstrates remarkable retention of 94% capacitance under 80% tensile strain and sustains a small 8% degradation over 20 000 charge-discharge cycles, achieving a specific capacitance of 4948 mF cm⁻ at 2 mA cm⁻. The device has an energy density of 801.6 µWh cm⁻ (400.6 Wh kg⁻¹) and exhibits excellent performance at a power density of 3.5 mW cm⁻ (1749.5 W kg⁻¹). These properties make the supercapacitors a potential for next-generation smart wearables and wearable electronics.
随着可穿戴电子设备的迅速发展,对柔性、耐用且高性能储能系统的需求显著增加。然而,在拉伸过程中保持稳定的电化学性能,同时确保高拉伸性和机械稳定性仍然是一个挑战。在此,本研究提出了一种新型的可拉伸超级电容器,它由使用呼吸图案法在预拉伸的碳纤维织物上制备的碳纳米管(CNT)和苯乙烯 - 丁二烯 - 苯乙烯(SBS)复合支架制成。然后进行水热处理,在处理过的碳纤维织物上生长NiCo-LDH。该方法在高湿度条件下诱导形成分级多孔结构,控制NiCo-LDH在CNT/SBS复合支架中的水热生长,并显著提高电化学性能和机械稳定性。该超级电容器在80%拉伸应变下电容保持率高达94%,在20000次充放电循环中仅出现8%的微小降解,在2 mA cm⁻²时比电容达到4948 mF cm⁻²。该器件的能量密度为801.6 µWh cm⁻³(400.6 Wh kg⁻¹),在功率密度为3.5 mW cm⁻³(1749.5 W kg⁻¹)时表现出优异性能。这些特性使该超级电容器具有应用于下一代智能可穿戴设备和可穿戴电子产品的潜力。