Ding Ting, Song Yin-Man, Wang Meng-Wei, Liu Hang, Jiang Jing, Xu Jin-Cheng, Liu Hong-Chao, Ng Kar-Wei, Wang Shuang-Peng
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China.
J Phys Chem Lett. 2024 Sep 12;15(36):9233-9238. doi: 10.1021/acs.jpclett.4c01974. Epub 2024 Sep 3.
Inserting an insulating layer between the charge transport layer (CTL) and quantum dot emitting layer (QDL) is widely used in improving the performance of quantum dot light-emitting diodes (QLEDs). However, the additional layer inevitably leads to energy loss and joule heat. Herein, a monolayer silane coupling agent is used to modify the said interfaces via the self-limiting adsorption effect. Because the ultrathin layers induce negligible series resistance to the device, they can partially passivate the interfacial defects on the electron transport side and help confine the electrons within the QDL on the hole transport side. These interfacial modifications can not only suppress the nonradiative recombination but also slow down the aging of the hole transport layer. The findings here underline a low-temperature adsorption-based strategy for effective interfacial modification which can be used in any layer-by-layer device structures.
在电荷传输层(CTL)和量子点发光层(QDL)之间插入绝缘层被广泛用于提高量子点发光二极管(QLED)的性能。然而,额外的层不可避免地会导致能量损失和焦耳热。在此,使用单层硅烷偶联剂通过自限吸附效应来修饰所述界面。由于超薄层对器件引起的串联电阻可忽略不计,它们可以部分钝化电子传输侧的界面缺陷,并有助于在空穴传输侧将电子限制在QDL内。这些界面修饰不仅可以抑制非辐射复合,还可以减缓空穴传输层的老化。此处的发现强调了一种基于低温吸附的有效界面修饰策略,该策略可用于任何逐层器件结构。