Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408716121. doi: 10.1073/pnas.2408716121. Epub 2024 Sep 3.
Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.
细菌进化,特别是在医院环境中,导致了多药耐药性的增加。了解这种耐药性的基础至关重要,因为它可以推动新抗生素的发现,同时优化已知抗生素的临床应用。在这里,我们报告了一种用于超分辨率显微镜的光活性化学探针,该探针可用于原位探测抗生素诱导的细菌结构破坏。通过点击化学将螺吡喃(SP)和半乳糖连接起来,产生一种两亲性光致变色糖探针,该探针在水中自组装成糖胶束。糖胶束的疏水性内核允许封装抗生素。光照射然后将 SP 转化为相应的变色体(MR)形式。这导致胶束解体,以按需释放抗生素。本研究中的糖胶束通过多价糖-凝集素相互作用选择性地粘附在革兰氏阴性细菌的表面。然后,从糖胶束中释放抗生素会诱导膜崩溃。由于 SP/MR 光致变色对的“荧光闪烁”,这个动态过程可以通过超分辨率光谱学进行原位成像。这项研究提供了一种高精度的成像工具,可用于实时可视化抗生素如何破坏细菌的结构完整性。