Suppr超能文献

二维离散时间生物模型的动力学与控制,其中包含弱阿利效应。

Dynamics and control of two-dimensional discrete-time biological model incorporating weak Allee's effect.

机构信息

Department of Mathematics, Riphah International University, 54660 Lahore, Pakistan.

Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, 64200 Rahim Yar Khan, Pakistan.

出版信息

Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0195199.

Abstract

Incorporating a weak Allee effect in a two-dimensional biological model in ℜ2, the study delves into the application of bifurcation theory, including center manifold and Ljapunov-Schmidt reduction, normal form theory, and universal unfolding, to analyze nonlinear stability issues across various engineering domains. The focus lies on the qualitative dynamics of a discrete-time system describing the interaction between prey and predator. Unlike its continuous counterpart, the discrete-time model exhibits heightened chaotic behavior. By exploring a biological Mmdel with linear functional prey response, the research elucidates the local asymptotic properties of equilibria. Additionally, employing bifurcation theory and the center manifold theorem, the analysis reveals that, for all α1 (i.e., intrinsic growth rate of prey), ð1˙ (i.e., parameter that scales the terms yn), and m (i.e., Allee effect constant), the model exhibits boundary fixed points A1 and A2, along with the unique positive fixed point A∗, given that the all parameters are positive. Additionally, stability theory is employed to explore the local dynamic characteristics, along with topological classifications, for the fixed points A1, A2, and A∗, considering the impact of the weak Allee effect on prey dynamics. A flip bifurcation is identified for the boundary fixed point A2, and a Neimark-Sacker bifurcation is observed in a small parameter neighborhood around the unique positive fixed point A∗=(mð1˙-1,α1-1-α1mð1˙-1). Furthermore, it implements two chaos control strategies, namely, state feedback and a hybrid approach. The effectiveness of these methods is demonstrated through numerical simulations, providing concrete illustrations of the theoretical findings. The model incorporates essential elements of population dynamics, considering interactions such as predation, competition, and environmental factors, along with a weak Allee effect influencing the prey population.

摘要

在 ℜ2 中的二维生物模型中纳入弱阿利效应,本研究深入探讨了分支理论的应用,包括中心流形和 Ljapunov-Schmidt 约化、规范形理论和通用展开,以分析各种工程领域的非线性稳定性问题。重点在于描述猎物和捕食者相互作用的离散时间系统的定性动力学。与连续时间模型不同,离散时间模型表现出更高的混沌行为。通过探索具有线性功能反应的生物模型,研究阐明了平衡点的局部渐近性质。此外,通过使用分支理论和中心流形定理,分析表明,对于所有α1(即猎物的固有增长率)、ð1˙(即缩放项 yn 的参数)和 m(即阿利效应常数),在所有参数均为正的情况下,模型表现出边界固定点 A1 和 A2,以及唯一的正固定点 A∗。此外,稳定性理论用于探索固定点 A1、A2 和 A∗的局部动态特征,以及拓扑分类,考虑到弱阿利效应对猎物动态的影响。边界固定点 A2 存在翻转分支,在唯一正固定点 A∗=(mð1˙-1,α1-1-α1mð1˙-1)的小参数邻域中存在 Neimark-Sacker 分支。进一步实施了两种混沌控制策略,即状态反馈和混合方法。通过数值模拟验证了这些方法的有效性,为理论发现提供了具体的例证。该模型包含了种群动态的基本要素,考虑了捕食、竞争和环境因素等相互作用,以及影响猎物种群的弱阿利效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验