Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
Biofabrication. 2024 Sep 18;16(4):045037. doi: 10.1088/1758-5090/ad76d9.
The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.
在工程化心脏组织中构建复杂且稳定的脉管系统是构建具有生理相关性的心脏模型的重大挑战。在这里,我们在纤维蛋白水凝胶中实现了心脏血管发生的 3D 模型,其中包含内皮细胞(EC)、基质细胞和人诱导多能干细胞(iPSC)衍生的心肌细胞(CM)。CM 的存在破坏了 3D 组织中的血管形成,导致内皮激活标志物上调,并通过对培养上清液的蛋白质组学分析改变工程组织中的细胞外囊泡(EV)信号。CM 和 EC 分泌的 EV 中的 miRNA 测序突出了关键的 EV-miRNA,推测它们在心脏血管发生中发挥不同的作用,包括 EC-EVs 中的 let-7 家族和 miR-126-3p。在没有 CM 的情况下,将 CM-EVs 补充到 EC 单层中会减弱 EC 的迁移和增殖,并导致在应用于 3D 血管组织时,自组装血管更短且更不连续。相比之下,将 EC-EVs 补充到 3D 血管化心脏组织的组织培养基中,可以减轻 CM 对血管自组装的一些有害影响,增强在 CM 存在下形成的血管管的平均长度和连续性。直接转染验证了关键的 EC-EV miRNA let-7b-5p 和 miR-126-3p 改善连续血管网络维持的作用。将 EC-EV 补充到生物制造的心脏组织和微流控设备中会导致组织血管化,说明了该方法在增强、可灌注的心肌微流控模型工程中的应用。