Hamidzada Homaira, Pascual-Gil Simon, Wu Qinghua, Kent Gregory M, Massé Stéphane, Kantores Crystal, Kuzmanov Uros, Gomez-Garcia M Juliana, Rafatian Naimeh, Gorman Renée A, Wauchop Marianne, Chen Wenliang, Landau Shira, Subha Tasnia, Atkins Michael H, Zhao Yimu, Beroncal Erika, Fernandes Ian, Nanthakumar Jared, Vohra Shabana, Wang Erika Y, Sadikov Tamilla Valdman, Razani Babak, McGaha Tracy L, Andreazza Ana C, Gramolini Anthony, Backx Peter H, Nanthakumar Kumaraswamy, Laflamme Michael A, Keller Gordon, Radisic Milica, Epelman Slava
Toronto General Hospital Research Institute, University Health Network, Toronto, ON.
Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON.
Nat Cardiovasc Res. 2024 May;3(5):567-593. doi: 10.1038/s44161-024-00471-7. Epub 2024 May 7.
Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1 macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.
卵黄囊巨噬细胞是最早定植于发育中心脏的细胞,然而由于缺乏可获取的组织,我们对它们在人类心脏发育和功能中的作用尚不清楚。在此,我们通过将人类胚胎干细胞(hESCs)分化为原始的LYVE1巨噬细胞(hESC-巨噬细胞)来填补这一空白,这些巨噬细胞能稳定地植入由hESC-心肌细胞和成纤维细胞组成的收缩性心脏微组织中。植入会诱导一个富含胞葬途径的人类胎儿心脏巨噬细胞基因程序。在功能上,hESC-巨噬细胞可触发心肌细胞肌节蛋白成熟,增强收缩力并改善舒张动力学。从机制上讲,hESC-巨噬细胞通过磷脂酰丝氨酸依赖性摄取凋亡心肌细胞货物,从而减轻微组织应激,使hESC-心肌细胞在转录和代谢上更类似于早期人类胎儿心室心肌细胞。抑制hESC-巨噬细胞的胞葬作用会损害肌节蛋白成熟并降低心脏微组织功能。综上所述,巨噬细胞工程化的人类心脏微组织是一种显著改进的人类心脏发育模型,并揭示了人类原始巨噬细胞在增强早期心脏组织功能方面的主要有益作用。