文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

黏膜型腺病毒疫苗加强免疫可诱导 IgA 产生,并可持久预防非人灵长类动物感染 XBB.1.16。

Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates.

机构信息

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Nat Immunol. 2024 Oct;25(10):1913-1927. doi: 10.1038/s41590-024-01951-5. Epub 2024 Sep 3.


DOI:10.1038/s41590-024-01951-5
PMID:39227514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11436372/
Abstract

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.

摘要

黏膜途径的疫苗接种可以在感染部位预防严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的复制,并限制传播。我们比较了在非人类灵长类动物(NHPs)中,肌肉内加强免疫双价 mRNA 编码 WA1 和 BA.5 刺突蛋白或黏膜加强免疫用 WA1-BA.5 双价 chimpanzee 腺病毒载体疫苗通过鼻内或气溶胶装置接种后,对异源 XBB.1.16 挑战的保护作用。通过黏膜途径加强免疫的 NHPs 分别在鼻腔和肺部的病毒复制最少。相比之下,肌肉内 mRNA 疫苗的保护作用仅限于下呼吸道。黏膜递送的疫苗可诱导持久的气道 IgG 和 IgA 反应,并且与肌肉内 mRNA 疫苗不同,可在肺部诱导针对刺突蛋白的 B 细胞。IgG、IgA 和 T 细胞反应与肺部的保护作用相关,而黏膜 IgA 与上呼吸道的保护作用相关。这项研究强调了黏膜和血清保护作用的差异,以及黏膜疫苗如何持久地预防 SARS-CoV-2 感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/9997bcac7642/41590_2024_1951_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/f440598a9f32/41590_2024_1951_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/68f5c311abea/41590_2024_1951_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/3c88a9bdfa60/41590_2024_1951_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/bfc361424897/41590_2024_1951_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/604b1c6c9ffb/41590_2024_1951_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/79a30f16c572/41590_2024_1951_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/38fa83384593/41590_2024_1951_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/20c690223559/41590_2024_1951_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/fccd7a9a4f2d/41590_2024_1951_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/8f8f26bdfc6c/41590_2024_1951_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/0561e35b64f7/41590_2024_1951_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/2158c60bea7a/41590_2024_1951_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/c64071891856/41590_2024_1951_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/1ede0e90e0cc/41590_2024_1951_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/b225d8295d01/41590_2024_1951_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/9997bcac7642/41590_2024_1951_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/f440598a9f32/41590_2024_1951_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/68f5c311abea/41590_2024_1951_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/3c88a9bdfa60/41590_2024_1951_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/bfc361424897/41590_2024_1951_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/604b1c6c9ffb/41590_2024_1951_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/79a30f16c572/41590_2024_1951_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/38fa83384593/41590_2024_1951_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/20c690223559/41590_2024_1951_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/fccd7a9a4f2d/41590_2024_1951_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/8f8f26bdfc6c/41590_2024_1951_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/0561e35b64f7/41590_2024_1951_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/2158c60bea7a/41590_2024_1951_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/c64071891856/41590_2024_1951_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/1ede0e90e0cc/41590_2024_1951_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/b225d8295d01/41590_2024_1951_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a4/11436372/9997bcac7642/41590_2024_1951_Fig16_ESM.jpg

相似文献

[1]
Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates.

Nat Immunol. 2024-10

[2]
Comparative immunogenicity of monovalent and bivalent adenovirus vaccines carrying spikes of early and late SARS-CoV-2 variants.

Emerg Microbes Infect. 2024-12

[3]
Ipsilateral or contralateral boosting of mice with mRNA vaccines confers equivalent immunity and protection against a SARS-CoV-2 Omicron strain.

J Virol. 2024-9-17

[4]
Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates.

bioRxiv. 2023-11-8

[5]
Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques.

Nature. 2024-2

[6]
Mucosal SARS-CoV-2 S1 adenovirus-based vaccine elicits robust systemic and mucosal immunity and protects against disease in animals.

mBio. 2025-1-8

[7]
Intranasal SARS-CoV-2 Omicron variant vaccines elicit humoral and cellular mucosal immunity in female mice.

EBioMedicine. 2024-7

[8]
Intranasal adenovirus-vectored Omicron vaccine induced nasal immunoglobulin A has superior neutralizing potency than serum antibodies.

Signal Transduct Target Ther. 2024-7-22

[9]
Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates.

Science. 2021-9-17

[10]
An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection.

Front Immunol. 2021

引用本文的文献

[1]
Systemic and Mucosal Humoral Immune Responses to Lumazine Synthase 60-mer Nanoparticle SARS-CoV-2 Vaccines.

Vaccines (Basel). 2025-7-23

[2]
Safety and Immunogenicity of aerosolized adenovirus-vectored COVID-19 vaccine and intramuscular mRNA vaccine bivalent boosters: a randomized open-label clinical trial.

Nat Commun. 2025-8-7

[3]
XBB.1.5 COVID-19 mRNA Vaccines Induce Inadequate Mucosal Immunity in Patients with Inflammatory Bowel Disease.

Vaccines (Basel). 2025-7-16

[4]
Intranasal booster induces durable mucosal immunity against SARS-CoV-2 in mice.

Sci Rep. 2025-7-7

[5]
Coordinated early immune response in the lungs is required for effective control of SARS-CoV-2 replication.

Nat Commun. 2025-6-25

[6]
Immunological duet between CD4 T cells and B cells in the lung following an intranasal protein boost.

Nat Immunol. 2025-6

[7]
Mucosal unadjuvanted booster vaccines elicit local IgA responses by conversion of pre-existing immunity in mice.

Nat Immunol. 2025-5-13

[8]
Nasal vaccines for respiratory infections.

Nature. 2025-5

[9]
Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model.

Vaccines (Basel). 2025-3-25

[10]
An intranasal subunit vaccine induces protective systemic and mucosal antibody immunity against respiratory viruses in mouse models.

Nat Commun. 2025-5-1

本文引用的文献

[1]
Mucosal vaccine-induced cross-reactive CD8 T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection.

Nat Immunol. 2024-3

[2]
Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques.

Nature. 2024-2

[3]
Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection.

Sci Adv. 2023-9-22

[4]
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography.

Nat Commun. 2023-8-26

[5]
Clinical Epidemiology and Risk Factors for Critical Outcomes Among Vaccinated and Unvaccinated Adults Hospitalized With COVID-19-VISION Network, 10 States, June 2021-March 2023.

Clin Infect Dis. 2024-2-17

[6]
Phase III Pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin).

NPJ Vaccines. 2023-8-18

[7]
Efficacy of mRNA-1273 and Novavax ancestral or BA.1 spike booster vaccines against SARS-CoV-2 BA.5 infection in nonhuman primates.

Sci Immunol. 2023-10-27

[8]
Cellular and humoral responses after second and third SARS-CoV-2 vaccinations in patients with autoimmune diseases treated with rituximab: specific T cell immunity remains longer and plays a protective role against SARS-CoV-2 reinfections.

Front Immunol. 2023

[9]
Interim safety and immunogenicity results from an NDV-based COVID-19 vaccine phase I trial in Mexico.

NPJ Vaccines. 2023-5-10

[10]
Mucosal immune responses following a fourth SARS-CoV-2 vaccine dose.

Lancet Microbe. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索