Suppr超能文献

利用图态资源实现噪声下的稳健量子磁力测量。

Harnessing graph state resources for robust quantum magnetometry under noise.

作者信息

Nguyen Phu Trong, Le Trung Kien, Nguyen Hung Q, Ho Le Bin

机构信息

Department of Advanced Material Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, 11307, Vietnam.

Department of Physics, University of California, Santa Barbara, Santa Barbara, USA.

出版信息

Sci Rep. 2024 Sep 4;14(1):20528. doi: 10.1038/s41598-024-71365-8.

Abstract

Precise measurement of magnetic fields is essential for various applications, such as fundamental physics, space exploration, and biophysics. Although recent progress in quantum engineering has assisted in creating advanced quantum magnetometers, there are still ongoing challenges in improving their efficiency and noise resistance. This study focuses on using symmetric graph state resources for quantum magnetometry to enhance measurement precision by analyzing the estimation theory under time-homogeneous and time-inhomogeneous noise models. The results show a significant improvement in estimating both single and multiple Larmor frequencies. In single Larmor frequency estimation, the quantum Fisher information spans a spectrum from the standard quantum limit to the Heisenberg limit within a periodic range of the Larmor frequency, and in the case of multiple Larmor frequencies, it can exceed the standard quantum limit for both noisy cases. This study highlights the potential of graph state-based methods for improving magnetic field measurements under noisy environments.

摘要

精确测量磁场对于各种应用至关重要,如基础物理学、太空探索和生物物理学。尽管量子工程最近取得的进展有助于制造先进的量子磁力计,但在提高其效率和抗噪声能力方面仍存在持续挑战。本研究专注于利用对称图态资源进行量子磁力测量,通过分析时间齐次和时间非齐次噪声模型下的估计理论来提高测量精度。结果表明,在估计单个和多个拉莫尔频率方面都有显著改进。在单个拉莫尔频率估计中,量子费希尔信息在拉莫尔频率的周期性范围内跨越从标准量子极限到海森堡极限的频谱,而在多个拉莫尔频率的情况下,对于两种噪声情况它都可以超过标准量子极限。本研究突出了基于图态的方法在有噪声环境下改善磁场测量的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/993c/11371932/53cd5cf6f51c/41598_2024_71365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验