Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
Nat Commun. 2023 Jan 30;14(1):490. doi: 10.1038/s41467-023-36146-3.
Quantum sensing has developed into a main branch of quantum science and technology. It aims at measuring physical quantities with high resolution, sensitivity, and dynamic range. Electron spins in diamond are powerful magnetic field sensors, but their sensitivity in the microwave regime is limited to a narrow band around their resonance frequency. Here, we realize broadband microwave detection using spins in diamond interfaced with a thin-film magnet. A pump field locally converts target microwave signals to the sensor-spin frequency via the non-linear spin-wave dynamics of the magnet. Two complementary conversion protocols enable sensing and high-fidelity spin control over a gigahertz bandwidth, allowing characterization of the spin-wave band at multiple gigahertz above the sensor-spin frequency. The pump-tunable, hybrid diamond-magnet sensor chip opens the way for spin-based gigahertz material characterizations at small magnetic bias fields.
量子传感已经发展成为量子科学与技术的主要分支。它旨在以高分辨率、灵敏度和动态范围来测量物理量。金刚石中的电子自旋是强大的磁场传感器,但它们在微波频段的灵敏度局限于共振频率附近的一个窄带。在这里,我们通过与薄膜磁体相接口的金刚石中的自旋来实现宽带微波检测。泵浦场通过磁体的非线性自旋波动力学将目标微波信号局部转换为传感器自旋频率。两种互补的转换协议使得在千兆赫带宽内进行传感和高保真度的自旋控制成为可能,从而允许在传感器自旋频率以上多个千兆赫的范围内对自旋波带进行表征。这种可泵浦的混合金刚石-磁体传感器芯片为在小磁场偏置下基于自旋的千兆赫材料特性表征开辟了道路。