Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
Department of BioSciences, Rice University, Houston, TX, 77005, USA.
EMBO J. 2024 Oct;43(19):4156-4172. doi: 10.1038/s44318-024-00178-2. Epub 2024 Sep 3.
Gas vesicles (GVs) are gas-filled microbial organelles formed by unique 3-nm thick, amphipathic, force-bearing protein shells, which can withstand multiple atmospheric pressures and maintain a physically stable air bubble with megapascal surface tension. However, the molecular process of GV assembly remains elusive. To begin understanding this process, we have devised a high-throughput in vivo assay to determine the interactions of all 11 proteins in the pNL29 GV operon. Complete or partial deletions of the operon establish interdependent relationships among GV proteins during assembly. We also examine the tolerance of the GV assembly process to protein mutations and the cellular burdens caused by GV proteins. Clusters of GV protein interactions are revealed, proposing plausible protein complexes that are important for GV assembly. We anticipate our findings will set the stage for designing GVs that efficiently assemble in heterologous hosts during biomedical applications.
气室(GVs)是由独特的 3nm 厚的两亲性、受力蛋白壳形成的充满气体的微生物细胞器,其能够承受多个大气压,并维持具有兆帕斯卡表面张力的物理稳定的气泡。然而,GV 组装的分子过程仍然难以捉摸。为了开始理解这个过程,我们设计了一种高通量的体内测定法来确定 pNL29 GV 操纵子中所有 11 种蛋白质的相互作用。操纵子的完整或部分缺失确定了组装过程中 GV 蛋白之间的相互依存关系。我们还研究了 GV 组装过程对蛋白质突变和 GV 蛋白引起的细胞负担的耐受性。揭示了 GV 蛋白相互作用的聚类,提出了对 GV 组装很重要的合理蛋白复合物。我们预计我们的发现将为设计在生物医学应用中在异源宿主中高效组装的 GVs 奠定基础。