Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
Genome Biol. 2024 Sep 3;25(1):236. doi: 10.1186/s13059-024-03376-7.
Missing covariate data is a common problem that has not been addressed in observational studies of gene expression. Here, we present a multiple imputation method that accommodates high dimensional gene expression data by incorporating principal component analysis of the transcriptome into the multiple imputation prediction models to avoid bias. Simulation studies using three datasets show that this method outperforms complete case and single imputation analyses at uncovering true positive differentially expressed genes, limiting false discovery rates, and minimizing bias. This method is easily implemented via an R Bioconductor package, RNAseqCovarImpute that integrates with the limma-voom pipeline for differential expression analysis.
缺失协变量数据是观察性基因表达研究中尚未解决的一个常见问题。在这里,我们提出了一种多重插补方法,通过将转录组的主成分分析纳入多重插补预测模型,来避免偏差,从而适应高维基因表达数据。使用三个数据集的模拟研究表明,这种方法在发现真正的差异表达基因、限制假发现率和最小化偏差方面优于完全案例分析和单插补分析。这种方法可以通过一个 R Bioconductor 包 RNAseqCovarImpute 轻松实现,该包与 limma-voom 管道集成,用于差异表达分析。