Deng Jiawen, Heybati Kiyan, Yadav Hemang
medRxiv. 2025 Jan 7:2024.08.17.24312159. doi: 10.1101/2024.08.17.24312159.
Propofol is a widely used sedative-hypnotic agent for critically-ill patients requiring invasive mechanical ventilation (IMV). Despite its clinical benefits, propofol is associated with increased risks of hypertriglyceridemia. Early identification of patients at risk for propofol-associated hypertriglyceridemia is crucial for optimizing sedation strategies and preventing adverse outcomes. Machine learning (ML) models offer a promising approach for predicting individualized patient risks of propofol-associated hypertriglyceridemia.
We propose the development of a ML model aimed at predicting the risk of propofol-associated hypertriglyceridemia in ICU patients receiving IMV. The study will utilize retrospective data from four Mayo Clinic sites. Nested cross-validation (CV) will be employed, with a 10-fold inner CV loop for model tuning and selection as well as an outer loop using leave-one-site-out CV for external validation. Feature selection will be conducted using Boruta and LASSO-penalized logistic regression. Data preprocessing steps include missing data imputation, feature scaling, and dimensionality reduction techniques. Six ML algorithms will be tuned and evaluated. Bayesian optimization will be used for hyperparameter selection. Global model explainability will be assessed using permutation importance, and local model explainability will be assessed using SHapley Additive exPlanations (SHAP).
The proposed ML model aims to provide a reliable and interpretable tool for clinicians to predict the risk of propofol-associated hypertriglyceridemia in ICU patients. The final model will be deployed in a web-based clinical risk calculator. The model development process and performance measures obtained during nested cross-validation will be described in a study publication to be disseminated in a peer-reviewed journal. The proposed study has received ethics approval from the Mayo Clinic Institutional Review Board (IRB #23-007416).
Robust external validation using a nested cross-validation (CV) framework will help assess the generalizability of models produced from the modeling pipeline across different hospital settings.A diverse set of machine learning (ML) algorithms and advanced hyperparameter tuning techniques will be employed to identify the most optimal model configuration.Integration of feature explainability will enhance the clinical applicability of the ML models by providing transparency in predictions, which can improve clinician trust and encourage adoption.Reliance on retrospective data may introduce biases due to inconsistent or erroneous data collection, and the computational intensity of the validation approach may limit replication and future model expansion in resource-constrained settings.
丙泊酚是一种广泛用于需要有创机械通气(IMV)的重症患者的镇静催眠药物。尽管丙泊酚有临床益处,但它与高甘油三酯血症风险增加有关。早期识别有丙泊酚相关性高甘油三酯血症风险的患者对于优化镇静策略和预防不良后果至关重要。机器学习(ML)模型为预测丙泊酚相关性高甘油三酯血症的个体患者风险提供了一种有前景的方法。
我们提议开发一个ML模型,旨在预测接受IMV的ICU患者发生丙泊酚相关性高甘油三酯血症的风险。该研究将利用来自梅奥诊所四个地点的回顾性数据。将采用嵌套交叉验证(CV),使用10倍的内部CV循环进行模型调整和选择,并使用留一法外部验证的外部循环进行外部验证。将使用Boruta和LASSO惩罚逻辑回归进行特征选择。数据预处理步骤包括缺失数据插补、特征缩放和降维技术。将对六种ML算法进行调整和评估。将使用贝叶斯优化进行超参数选择。将使用排列重要性评估全局模型可解释性,并使用SHapley加法解释(SHAP)评估局部模型可解释性。
提议的ML模型旨在为临床医生提供一个可靠且可解释的工具,以预测ICU患者发生丙泊酚相关性高甘油三酯血症的风险。最终模型将部署在基于网络的临床风险计算器中。在一项研究出版物中将描述模型开发过程以及在嵌套交叉验证期间获得的性能指标,该出版物将在同行评审期刊上发表。提议的研究已获得梅奥诊所机构审查委员会的伦理批准(IRB #23 - 007416)。
使用嵌套交叉验证(CV)框架进行稳健的外部验证将有助于评估建模流程生成的模型在不同医院环境中的通用性。将采用多种机器学习(ML)算法和先进的超参数调整技术来确定最优模型配置。特征可解释性的整合将通过提供预测透明度来增强ML模型 的临床适用性,这可以提高临床医生的信任并促进采用。由于数据收集不一致或错误,依赖回顾性数据可能会引入偏差,并且验证方法的计算强度可能会限制在资源受限环境中的复制和未来模型扩展。