Baum T B, Bodnya C, Costanzo J, Gama V
Vanderbilt University, Cell and Developmental Biology, Nashville, TN.
Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN.
bioRxiv. 2024 Aug 26:2024.08.23.609462. doi: 10.1101/2024.08.23.609462.
With the advent of exome sequencing, a growing number of children are being identified with loss of function mutations in the dynamin 1 like ( gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development . High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
随着外显子组测序技术的出现,越来越多的儿童被发现存在动力蛋白1样蛋白(编码线粒体分裂所必需的大GTP酶——动力相关蛋白1(DRP1))的功能丧失突变;这些突变会导致严重的神经发育表型,如发育迟缓、视神经萎缩和癫痫性脑病。虽然已经确定线粒体分裂是发育中的皮质快速变化的代谢需求的重要前提,但尚不清楚DRP1不同结构域中已确定的突变如何独特地破坏皮质发育和突触成熟。我们利用在GTP酶或柄结构域中携带DRP1突变的诱导多能干细胞(iPSC)的能力来模拟皮质发育的早期阶段。对突变型DRP1皮质神经元中轴突运输的高分辨率延时成像揭示了严重过度融合的线粒体结构的线粒体运动性的突变特异性变化。成熟过程中突变型DRP1皮质神经元的转录谱分析也表明突触发育和钙调节基因表达存在突变依赖性改变。使用100天体外培养(DIV)的突变型DRP1皮质神经元的实时功能记录证实了钙动力学的破坏。这些发现以及使用超分辨率显微镜对突触前和突触后标记物共定位的缺陷,强烈表明DRP1突变神经元线粒体形态的改变导致突触发育和活性的致病性失调。