Suppr超能文献

大规模神经网络刺激的灵活建模:用于细胞外电位的虚拟电极记录工具(VERTEX)的电学和光学扩展

Flexible modeling of large-scale neural network stimulation: electrical and optical extensions to The Virtual Electrode Recording Tool for EXtracellular Potentials (VERTEX).

作者信息

Pierce Anne F, Shupe Larry, Fetz Eberhard, Yazdan-Shahmorad Azadeh

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

Washington National Primate Research Center, Seattle, WA 98195, USA.

出版信息

bioRxiv. 2025 Jan 15:2024.08.20.608687. doi: 10.1101/2024.08.20.608687.

Abstract

BACKGROUND

Computational models that predict effects of neural stimulation can be used as a preliminary tool to inform research, reducing the costs, time, and ethical considerations involved. However, current models do not support the diverse neural stimulation techniques used , including the expanding selection of electrodes, stimulation modalities, and stimulation paradigms.

NEW METHOD

To develop a more comprehensive software, we created several extensions to The Virtual Electrode Recording Tool for EXtracellular Potentials (VERTEX), the MATLAB-based neural stimulation tool from Newcastle University. VERTEX simulates input currents in a large population of multi-compartment neurons within a small cortical slice to model electric field stimulation, while recording local field potentials (LFPs) and spiking activity. Our extensions to its existing electric field stimulation framework include allowing multiple pairs of parametrically defined electrodes and biphasic, bipolar stimulation delivered at programmable delays. To support the growing use of optogenetic approaches for targeted neural stimulation, we introduced a feature that models optogenetic stimulation through an additional VERTEX input function that converts irradiance to currents at optogenetically responsive neurons. Finally, we added extensions to allow complex stimulation protocols including paired-pulse, spatiotemporal patterned, and closed-loop stimulation.

RESULTS

We demonstrated our novel features using VERTEX's built-in functionalities, with results in alignment with other models and experimental work.

CONCLUSIONS

Our extensions provide an all in one platform to efficiently and systematically test diverse, targeted, and individualized stimulation patterns.

摘要

背景

预测神经刺激效果的计算模型可作为一种初步工具,为研究提供信息,降低相关成本、时间和伦理考量。然而,当前模型并不支持所使用的多种神经刺激技术,包括不断增加的电极选择、刺激方式和刺激范式。

新方法

为开发一个更全面的软件,我们对纽卡斯尔大学基于MATLAB的神经刺激工具——用于细胞外电位的虚拟电极记录工具(VERTEX)进行了多项扩展。VERTEX在一个小皮质切片内的大量多室神经元中模拟输入电流,以对电场刺激进行建模,同时记录局部场电位(LFP)和尖峰活动。我们对其现有电场刺激框架的扩展包括允许多对参数定义的电极以及以可编程延迟进行双相、双极刺激。为支持光遗传学方法在靶向神经刺激中的日益广泛应用,我们引入了一项功能,即通过一个额外的VERTEX输入函数对光遗传学刺激进行建模,该函数将光强转换为光遗传学响应神经元处的电流。最后,我们添加了扩展功能以允许复杂的刺激方案,包括配对脉冲、时空模式和闭环刺激。

结果

我们使用VERTEX的内置功能展示了我们的新特性,结果与其他模型和实验工作一致。

结论

我们的扩展提供了一个一体化平台,可高效、系统地测试各种不同的、靶向的和个性化的刺激模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b70/11867420/1d5c1621ebb6/nihpp-2024.08.20.608687v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验