Suppr超能文献

一种模拟人为诱导皮层可塑性的积分点火尖峰神经网络模型。

An Integrate-and-Fire Spiking Neural Network Model Simulating Artificially Induced Cortical Plasticity.

机构信息

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195.

Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, WA 98195

出版信息

eNeuro. 2021 Mar 12;8(2). doi: 10.1523/ENEURO.0333-20.2021. Print 2021 Mar-Apr.

Abstract

We describe an integrate-and-fire (IF) spiking neural network that incorporates spike-timing-dependent plasticity (STDP) and simulates the experimental outcomes of four different conditioning protocols that produce cortical plasticity. The original conditioning experiments were performed in freely moving non-human primates (NHPs) with an autonomous head-fixed bidirectional brain-computer interface (BCI). Three protocols involved closed-loop stimulation triggered from (1) spike activity of single cortical neurons, (2) electromyographic (EMG) activity from forearm muscles, and (3) cycles of spontaneous cortical beta activity. A fourth protocol involved open-loop delivery of pairs of stimuli at neighboring cortical sites. The IF network that replicates the experimental results consists of 360 units with simulated membrane potentials produced by synaptic inputs and triggering a spike when reaching threshold. The 240 cortical units produce either excitatory or inhibitory postsynaptic potentials (PSPs) in their target units. In addition to the experimentally observed conditioning effects, the model also allows computation of underlying network behavior not originally documented. Furthermore, the model makes predictions about outcomes from protocols not yet investigated, including spike-triggered inhibition, γ-triggered stimulation and disynaptic conditioning. The success of the simulations suggests that a simple voltage-based IF model incorporating STDP can capture the essential mechanisms mediating targeted plasticity with closed-loop stimulation.

摘要

我们描述了一个整合-触发(IF)尖峰神经网络,它结合了尖峰时间依赖性可塑性(STDP),并模拟了产生皮质可塑性的四种不同条件作用协议的实验结果。最初的条件作用实验是在自由移动的非人类灵长类动物(NHPs)中进行的,使用自主头部固定双向脑机接口(BCI)。三个协议涉及闭环刺激,触发源分别为(1)单个皮质神经元的尖峰活动,(2)来自前臂肌肉的肌电图(EMG)活动,以及(3)自发皮质β活动的循环。第四个协议涉及在相邻皮质位点传递成对刺激的开环方式。复制实验结果的 IF 网络由 360 个单元组成,每个单元的模拟膜电位由突触输入产生,并在达到阈值时触发尖峰。240 个皮质单元在其目标单元中产生兴奋性或抑制性突触后电位(PSPs)。除了观察到的实验条件作用效果外,该模型还允许计算未最初记录的基础网络行为。此外,该模型还对尚未研究的协议的结果进行了预测,包括尖峰触发抑制、γ 触发刺激和双突触条件作用。模拟的成功表明,一个简单的基于电压的 IF 模型,结合了 STDP,可以捕捉到用闭环刺激介导靶向可塑性的基本机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3554/7986529/2935639ef6c1/SN-ENUJ210058F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验