Suppr超能文献

多基因评分可移植性的三个开放性问题。

Three Open Questions in Polygenic Score Portability.

作者信息

Wang Joyce Y, Lin Neeka, Zietz Michael, Mares Jason, Narasimhan Vagheesh M, Rathouz Paul J, Harpak Arbel

机构信息

Department of Integrative Biology, The University of Texas at Austin, Austin, TX.

Department of Biomedical Informatics, Columbia University, New York, NY.

出版信息

bioRxiv. 2024 Aug 21:2024.08.20.608703. doi: 10.1101/2024.08.20.608703.

Abstract

A major obstacle hindering the broad adoption of polygenic scores (PGS) is their lack of "portability" to people that differ-in genetic ancestry or other characteristics-from the GWAS samples in which genetic effects were estimated. Here, we use the UK Biobank to measure the change in PGS prediction accuracy as a continuous function of individuals' genome-wide genetic dissimilarity to the GWAS sample ("genetic distance"). Our results highlight three gaps in our understanding of PGS portability. First, prediction accuracy is extremely noisy at the individual level and not well predicted by genetic distance. In fact, variance in prediction accuracy is explained comparably well by socioeconomic measures. Second, trends of portability vary across traits. For several immunity-related traits, prediction accuracy drops near zero quickly even at intermediate levels of genetic distance. This quick drop may reflect GWAS associations being more ancestry-specific in immunity-related traits than in other traits. Third, we show that even qualitative trends of portability can depend on the measure of prediction accuracy used. For instance, for white blood cell count, a measure of prediction accuracy at the individual level (reduction in mean squared error) increases with genetic distance. Together, our results show that portability cannot be understood through global ancestry groupings alone. There are other, understudied factors influencing portability, such as the specifics of the evolution of the trait and its genetic architecture, social context, and the construction of the polygenic score. Addressing these gaps can aid in the development and application of PGS and inform more equitable genomic research.

摘要

阻碍多基因分数(PGS)广泛应用的一个主要障碍是,对于那些在遗传血统或其他特征上与估计遗传效应的全基因组关联研究(GWAS)样本不同的人群,PGS缺乏“可移植性”。在此,我们利用英国生物银行来衡量PGS预测准确性的变化,该变化是个体与GWAS样本的全基因组遗传差异(“遗传距离”)的连续函数。我们的研究结果凸显了我们在理解PGS可移植性方面存在的三个差距。首先,预测准确性在个体层面极其不稳定,且无法通过遗传距离得到很好的预测。事实上,社会经济指标对预测准确性方差的解释程度相当。其次,可移植性趋势因性状而异。对于一些与免疫相关的性状,即使在中等遗传距离水平,预测准确性也会迅速降至接近零。这种快速下降可能反映出GWAS关联在免疫相关性状中比在其他性状中更具血统特异性。第三,我们表明,即使是可移植性的定性趋势也可能取决于所使用的预测准确性衡量指标。例如,对于白细胞计数,个体层面的预测准确性衡量指标(均方误差降低)会随着遗传距离的增加而提高。总之,我们的研究结果表明,不能仅通过全球血统分组来理解可移植性。还有其他一些尚未充分研究的影响可移植性的因素,如性状进化及其遗传结构的具体情况、社会背景以及多基因分数的构建。弥补这些差距有助于PGS的开发和应用,并为更公平的基因组研究提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a974/11370354/bad2c674e08d/nihpp-2024.08.20.608703v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验