Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands.
Division of Pharmaceutics, Department of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Biomater Sci. 2024 Oct 8;12(20):5225-5238. doi: 10.1039/d4bm00624k.
Despite extensive research, current methods for creating three-dimensional (3D) silk fibroin (SF) scaffolds lack control over molecular rearrangement, particularly in the formation of β-sheet nanocrystals that severely embrittle SF, as well as hierarchical fiber organization at both micro- and macroscale. Here, we introduce a fabrication process based on electrowriting of aqueous SF solutions followed by post-processing using an aqueous solution of sodium dihydrogen phosphate (NaHPO). This approach enables gelation of SF chains controlled β-sheet formation and partial conservation of compliant random coil structures. Moreover, this process allows for precise architecture control in microfiber scaffolds, enabling the creation of 3D flat and tubular macro-geometries with square-based and crosshatch microarchitectures, featuring inter-fiber distances of 400 μm and ∼97% open porosity. Remarkably, the crosslinked printed structures demonstrated a balanced coexistence of β-sheet and random coil conformations, which is uncommon for organic solvent-based crosslinking methods. This synergy of printing and post-processing yielded stable scaffolds with high compliance (modulus = 0.5-15 MPa) and the ability to support elastic cyclic loading up to 20% deformation. Furthermore, the printed constructs supported adherence and growth of human renal epithelial and endothelial cells with viability above 95%. These cells formed homogeneous monolayers that aligned with the fiber direction and deposited type-IV collagen as a specific marker of healthy extracellular matrix, indicating that both cell types attach, proliferate, and organize their own microenvironment within the SF scaffolds. These findings represent a significant development in fabricating organized stable SF scaffolds with unique microfiber structures and mechanical and biological properties that make them highly promising for tissue engineering applications.
尽管进行了广泛的研究,但目前用于制造三维(3D)丝素(SF)支架的方法缺乏对分子重排的控制,特别是在β-片晶纳米晶体的形成方面,这会严重使 SF 变脆,以及在微观和宏观尺度上的纤维组织的分级。在这里,我们介绍了一种基于丝素水溶液的电纺丝后处理的制造工艺,后处理使用磷酸二氢钠(NaHPO)的水溶液。这种方法可以控制 SF 链的凝胶化,形成β-片晶,并部分保留柔顺的无规卷曲结构。此外,该过程允许对微纤维支架进行精确的结构控制,能够创建具有正方形基底和交叉微结构的 3D 平板和管状宏观结构,其特征是纤维间距离为 400μm,开放孔隙率约为 97%。值得注意的是,交联的打印结构表现出β-片晶和无规卷曲构象的平衡共存,这对于有机溶剂基交联方法来说是不常见的。这种打印和后处理的协同作用产生了具有高顺应性(模量=0.5-15MPa)的稳定支架,并且能够承受高达 20%变形的弹性循环加载。此外,打印构建体支持人肾上皮细胞和内皮细胞的粘附和生长,细胞活力超过 95%。这些细胞形成了均匀的单层,与纤维方向一致,并沉积 IV 型胶原蛋白作为健康细胞外基质的特定标志物,表明两种细胞类型都在 SF 支架内附着、增殖并组织自己的微环境。这些发现代表了在制造具有独特微纤维结构和机械及生物学特性的组织工程应用中具有高度应用前景的有序稳定 SF 支架方面的重要进展。