Suppr超能文献

PD-L1 抑制剂的创新虚拟筛选:分子相似性、神经网络和 GNINA 对接的协同作用。

Innovative virtual screening of PD-L1 inhibitors: the synergy of molecular similarity, neural networks and GNINA docking.

机构信息

Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Vietnam.

Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.

出版信息

Future Med Chem. 2024;16(20):2107-2118. doi: 10.1080/17568919.2024.2389773. Epub 2024 Sep 4.

Abstract

Immune checkpoint inhibitors targeting PD-L1 are crucial in cancer research for preventing cancer cells from evading the immune system. This study developed a screening model combining ANN, molecular similarity, and GNINA 1.0 docking to target PD-L1. A database of 2044 substances was compiled from patents. For molecular similarity, the AVALON emerged as the most effective fingerprint, demonstrating an AUC-ROC of 0.963. The ANN model outperformed the Random Forest and Support Vector Classifier in cross-validation and external validation, achieving an average precision of 0.851 and an F1 score of 0.790. GNINA 1.0 was validated through redocking and retrospective control, achieving an AUC of 0.975. From 15235 DrugBank compounds, 22 candidates were shortlisted. Among which (3)-1-(4-acetylphenyl)-5-oxopyrrolidine-3-carboxylic acid emerged as the most promising.

摘要

免疫检查点抑制剂靶向 PD-L1 是癌症研究中的关键,可防止癌细胞逃避免疫系统。本研究开发了一种结合 ANN、分子相似性和 GNINA 1.0 对接的筛选模型来靶向 PD-L1。从专利中编译了一个包含 2044 种物质的数据库。对于分子相似性,AVALON 是最有效的指纹,AUC-ROC 为 0.963。ANN 模型在交叉验证和外部验证中的表现优于随机森林和支持向量分类器,平均精度为 0.851,F1 得分为 0.790。GNINA 1.0 通过重新对接和回顾性控制进行了验证,AUC 为 0.975。从 15235 种 DrugBank 化合物中,筛选出 22 种候选物。其中(3)-1-(4-乙酰苯基)-5-氧代吡咯烷-3-羧酸被认为是最有前途的候选物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验