Suppr超能文献

通过大规模预训练学习单个神经元形态的有意义表示。

Learning meaningful representation of single-neuron morphology via large-scale pre-training.

机构信息

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.

Harbin Institute of Technology, Shenzhen, Guangdong, China.

出版信息

Bioinformatics. 2024 Sep 1;40(Suppl 2):ii128-ii136. doi: 10.1093/bioinformatics/btae395.

Abstract

SUMMARY

Single-neuron morphology, the study of the structure, form, and shape of a group of specialized cells in the nervous system, is of vital importance to define the type of neurons, assess changes in neuronal development and aging and determine the effects of brain disorders and treatments. Despite the recent surge in the amount of available neuron morphology reconstructions due to advancements in microscopy imaging, existing computational and deep learning methods for modeling neuron morphology have been limited in both scale and accuracy. In this paper, we propose MorphRep, a model for learning meaningful representation of neuron morphology pre-trained with over 250 000 existing neuron morphology data. By encoding the neuron morphology into graph-structured data, using graph transformers for feature encoding and enforcing the consistency between multiple augmented views of neuron morphology, MorphRep achieves the state of the art performance on widely used benchmarking datasets. Meanwhile, MorphRep can accurately characterize the neuron morphology space across neuron morphometrics, fine-grained cell types, brain regions and ages. Furthermore, MorphRep can be applied to distinguish neurons under a wide range of conditions, including genetic perturbation, drug injection, environment change and disease. In summary, MorphRep provides an effective strategy to embed and represent neuron morphology and can be a valuable tool in integrating cell morphology into single-cell multiomics analysis.

AVAILABILITY AND IMPLEMENTATION

The codebase has been deposited in https://github.com/YaxuanLi-cn/MorphRep.

摘要

摘要

神经元形态学是研究神经系统中一组特定细胞的结构、形态和形状的重要领域,对于确定神经元的类型、评估神经元发育和衰老的变化以及确定脑疾病和治疗的影响具有至关重要的意义。尽管由于显微镜成像技术的进步,可用的神经元形态重建数量最近有所增加,但现有的用于模拟神经元形态的计算和深度学习方法在规模和准确性方面都受到限制。在本文中,我们提出了 MorphRep,这是一种使用超过 25 万种现有神经元形态数据进行预训练以学习神经元形态有意义表示的模型。通过将神经元形态编码为图结构数据,使用图转换器进行特征编码,并强制多个神经元形态增强视图之间的一致性,MorphRep 在广泛使用的基准数据集上实现了最先进的性能。同时,MorphRep 可以准确地描述跨神经元形态计量学、细粒度细胞类型、脑区和年龄的神经元形态空间。此外,MorphRep 可用于区分广泛条件下的神经元,包括遗传扰动、药物注射、环境变化和疾病。总之,MorphRep 提供了一种嵌入和表示神经元形态的有效策略,并可以成为将细胞形态整合到单细胞多组学分析中的有价值的工具。

可用性和实现

该代码库已在 https://github.com/YaxuanLi-cn/MorphRep 中进行了存储。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验