Troidl Jakob, Knittel Johannes, Li Wanhua, Zhan Fangneng, Pfister Hanspeter, Turaga Srinivas
Harvard University.
HHMI Janelia.
bioRxiv. 2025 Mar 10:2024.11.24.625067. doi: 10.1101/2024.11.24.625067.
Connectomics is a subfield of neuroscience that aims to map the brain's intricate wiring diagram. Accurate neuron segmentation from microscopy volumes is essential for automating connectome reconstruction. However, current state-of-the-art algorithms use image-based convolutional neural networks that are limited to local neuron shape context. Thus, we introduce a new framework that reasons over global neuron shape with a novel point affinity transformer. Our framework embeds a (multi-)neuron point cloud into a fixed-length feature set from which we can decode any point pair affinities, enabling clustering neuron point clouds for automatic proofreading. We also show that the learned feature set can easily be mapped to a contrastive embedding space that enables neuron type classification using a simple KNN classifier. Our approach excels in two demanding connectomics tasks: proofreading segmentation errors and classifying neuron types. Evaluated on three benchmark datasets derived from state-of-the-art connectomes, our method outperforms point transformers, graph neural networks, and unsupervised clustering baselines.
连接组学是神经科学的一个子领域,旨在绘制大脑复杂的布线图。从显微镜图像中准确分割神经元对于自动重建连接组至关重要。然而,当前最先进的算法使用基于图像的卷积神经网络,其局限于局部神经元形状上下文。因此,我们引入了一个新框架,该框架利用一种新颖的点亲和变压器对全局神经元形状进行推理。我们的框架将(多个)神经元点云嵌入到一个固定长度的特征集中,从中我们可以解码任意点对的亲和性,从而能够对神经元点云进行聚类以进行自动校对。我们还表明,学习到的特征集可以轻松映射到对比嵌入空间,从而能够使用简单的K近邻分类器对神经元类型进行分类。我们的方法在两项具有挑战性的连接组学任务中表现出色:校对分割错误和分类神经元类型。在从最先进的连接组中导出的三个基准数据集上进行评估时,我们的方法优于点变压器、图神经网络和无监督聚类基线。