Suppr超能文献

用于神经元形态分类的对比学习驱动框架。

Contrastive learning-driven framework for neuron morphology classification.

作者信息

Jiang Yikang, Tian Hao, Zhang Quanbing

机构信息

Institute of Electronic Information Engineering, Anhui University, Hefei, China.

出版信息

Sci Rep. 2025 Jul 30;15(1):27752. doi: 10.1038/s41598-025-11842-w.

Abstract

The Neuron morphology classification is a critical task in neuroscience research, as the morphological features of neurons are closely linked to the functional characteristics of neural circuits. However, traditional classification methods often struggle with the complexity and diversity of neuronal morphologies. To address this, we propose PRT-net, a network architecture specifically designed for neuron morphology classification. By incorporating innovative data augmentation strategies and a contrastive learning framework, PRT-net effectively improves classification performance and model generalization. PRT-net leverages Complex Residual Structures and TreeLSTM to efficiently model the local features and global dependencies of neuron morphology. To address issues of data scarcity and imbalance, we designed a tailored data augmentation strategy that simulates diverse morphological variations, enhancing model robustness. Experiments conducted on three public datasets-BIL, JML, and ACT-demonstrate that PRT-net achieves classification accuracies of 78.45%, 67.11%, and 58.95%, respectively, significantly surpassing existing state-of-the-art methods. Notably, it achieves improvements of 2.9 and 3.3 percentage points on the JML and ACT datasets, respectively. Through the introduction of multiple evaluation metrics, we comprehensively analyze the classification and clustering performance of the model, validating its strong adaptability to complex data distributions. This study provides an efficient solution for neuron morphology classification, advancing research in this domain.

摘要

神经元形态分类是神经科学研究中的一项关键任务,因为神经元的形态特征与神经回路的功能特性密切相关。然而,传统的分类方法常常难以应对神经元形态的复杂性和多样性。为了解决这个问题,我们提出了PRT-net,一种专门为神经元形态分类设计的网络架构。通过结合创新的数据增强策略和对比学习框架,PRT-net有效地提高了分类性能和模型泛化能力。PRT-net利用复杂残差结构和树状长短期记忆网络(TreeLSTM)来有效地对神经元形态的局部特征和全局依赖性进行建模。为了解决数据稀缺和不平衡的问题,我们设计了一种定制的数据增强策略,该策略模拟了多种形态变化,增强了模型的鲁棒性。在三个公共数据集——BIL、JML和ACT上进行的实验表明,PRT-net分别实现了78.45%、67.11%和58.95%的分类准确率,显著超过了现有的最先进方法。值得注意的是,它在JML和ACT数据集上分别提高了2.9和3.3个百分点。通过引入多个评估指标,我们全面分析了模型的分类和聚类性能,验证了其对复杂数据分布的强大适应性。这项研究为神经元形态分类提供了一种有效的解决方案,推动了该领域的研究进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验