Department of Radiation Oncology, Shanghai Concord Medical Cancer center, Shanghai, China.
Proton & Heavy Ion Medical Research Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow, Jiangsu, China.
J Appl Clin Med Phys. 2024 Nov;25(11):e14502. doi: 10.1002/acm2.14502. Epub 2024 Sep 4.
This paper describes the implementation of an instantaneous low-dose-rate total body irradiation (TBI) technique using block-filtered 6 MV X-rays with a linear accelerator (LINAC) to reduce pulmonary toxicity.
In the absence of dedicated TBI-specific meter-set dose rates in LINAC and sufficient treatment room size, a 2-cm-thick transmission block was used together with a 200-cm source-to-surface distance (SSD) to reduce the instantaneous dose rates of 6 MV x-rays down to 10 cGy/min, thus alteration to the beam properties. A TBI-specific dose calculation model was built with data acquired at the treatment planning system (TPS)-permitted maximum 140-cm SSD and was validated in phantoms at a 180-cm SSD. As for planning strategies, we adopted large anterior-to-posterior/posterior-to-anterior (AP/PA) open fields with multi-leaf collimator shielding for lungs to achieve target coverage, lung protection, and efficient dose delivery. A custom-designed sliding couch (Patent No. ZL202123085880.1) was manufactured to support patients during treatment. Measures to control the quality and safety of TBI treatment include machine interlocks, pretreatment checklists, and in-vivo dose monitoring.
The instantaneous dose rate of block-filtered 6MV X-ray was reduced to approximately 7.0 cGy/min at 12.5-7.5 cm depth with a 185-200 cm SSD. The dose calculated by TPS differs from the measurements by 0.15%-1.55% in the homogeneous phantom and 1.2%-4.85% in the CIRS thorax phantom. The open-field TBI technique achieved V (PTV) ≈ 96.8% and MLD = 6.6 Gy with 1-h planning and 50-min beam delivery in a single fraction. From February 2021 to July 2023, 30 patients received TBI treatments in our center, and in-vivo monitoring results differed from TPS calculations by -1.49%-2.10%. After 6-12 months of follow-ups, all the patients treated in our center showed no pulmonary toxicities of grade 2 or higher.
A low instantaneous dose rate TBI technique can be implemented in the clinic.
本文描述了一种使用直线加速器(LINAC)中的块状过滤 6MV X 射线实施瞬时低剂量率全身照射(TBI)技术,以降低肺毒性。
在 LINAC 中没有专用的 TBI 特定剂量计和足够的治疗室尺寸的情况下,使用 2 厘米厚的透射块和 200 厘米源皮距(SSD)将 6MV X 射线的瞬时剂量率降低至 10cGy/min,从而改变射线特性。使用在治疗计划系统(TPS)允许的最大 140 厘米 SSD 处获得的数据构建了 TBI 专用剂量计算模型,并在 180 厘米 SSD 处的体模中进行了验证。在规划策略方面,我们采用了大型前后/后前(AP/PA)开放野,并用多叶准直器屏蔽肺部,以实现靶区覆盖、肺保护和高效剂量输送。定制设计的滑动床(专利号:ZL202123085880.1)用于在治疗期间支撑患者。控制 TBI 治疗质量和安全性的措施包括机器互锁、预处理检查表和体内剂量监测。
在 12.5-7.5 厘米深度和 185-200 厘米 SSD 处,块状过滤 6MV X 射线的瞬时剂量率降低至约 7.0cGy/min。TPS 计算的剂量与均匀体模中的测量值相差 0.15%-1.55%,与 CIRS 胸部体模中的测量值相差 1.2%-4.85%。开放野 TBI 技术在单次分割 1 小时计划和 50 分钟束流输送后实现了 V(PTV)≈96.8%和 MLD=6.6Gy。从 2021 年 2 月至 2023 年 7 月,我们中心有 30 名患者接受了 TBI 治疗,体内监测结果与 TPS 计算值相差-1.49%-2.10%。在 6-12 个月的随访后,我们中心治疗的所有患者均未出现 2 级或更高级别的肺部毒性。
可以在临床中实施低瞬时剂量率 TBI 技术。