Luan Likun, Zhang Yingfang, Ji Xiuling, Guo Boxia, Song Shaoyu, Huang Yuhong, Zhang Suojiang
Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(41):e2407204. doi: 10.1002/advs.202407204. Epub 2024 Sep 4.
Multi-enzymatic cascade reaction provides a new avenue for C─C coupling directly from CO under mild conditions. In this study, a new pathway with four enzymes including formate dehydrogenase (PaFDH), formaldehyde dehydrogenase (BmFADH), glycolaldehyde synthase (PpGALS), and alcohol dehydrogenase (GoADH) is developed for directly converting CO gas molecules to ethylene glycol (EG) in vitro. A rhodium-based NADH regeneration electrode is constructed to continuously provide the proton and electron of this multi-enzymatic cascade reaction. The prepared electrode can reach the Faradaic Efficiency (FE) of 82.9% at -0.6 V (vs. Ag/AgCl) and the NADH productivity of 0.737 mM h. Shortening the reaction path is crucial for multi-enzymatic cascade reactions. Here, a hydrogen-bonded organic framework (HOF) nano-reactor is successfully developed to immobilize four enzymes in one pot with a striking enzyme loading capacity (990 mg enzyme g material). Through integrating and optimization of NADH electro-regeneration and enzymatic catalysis in one pot, 0.15 mM EG is achieved with an average conversion rate of 7.15 × 10 mmol CO min mg enzymes in 6 h. These results shed light on electro-driven multi-enzymatic cascade conversion of C─C coupling from CO in the nano-reactor.
多酶级联反应为在温和条件下直接从CO进行C─C偶联提供了一条新途径。在本研究中,开发了一条包含甲酸脱氢酶(PaFDH)、甲醛脱氢酶(BmFADH)、乙醇醛合酶(PpGALS)和乙醇脱氢酶(GoADH)这四种酶的新途径,用于在体外将CO气体分子直接转化为乙二醇(EG)。构建了一种基于铑的NADH再生电极,以持续提供这种多酶级联反应所需的质子和电子。所制备的电极在-0.6 V(相对于Ag/AgCl)时的法拉第效率(FE)可达82.9%,NADH产率为0.737 mM/h。缩短反应路径对于多酶级联反应至关重要。在此,成功开发了一种氢键有机框架(HOF)纳米反应器,能够将四种酶一次性固定在其中,具有惊人的酶负载量(990 mg酶/g材料)。通过将NADH电再生和酶催化在一个体系中进行整合与优化,在6小时内实现了0.15 mM的EG产量,平均转化率为7.15×10 mmol CO/min·mg酶。这些结果为纳米反应器中由CO驱动的C─C偶联电驱动多酶级联转化提供了思路。