Suppr超能文献

通过模拟叶绿体构建具有功能分区的无机光催化剂-酶体系用于高效光还原 CO 为甲酸。

Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO to Formic Acid.

机构信息

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2020 Aug 5;12(31):34795-34805. doi: 10.1021/acsami.0c06684. Epub 2020 Jul 27.

Abstract

Inorganic photocatalyst-enzyme systems are a prominent platform for the photoreduction of CO to value-added chemicals and fuels. However, poor electron transfer kinetics and enzyme deactivation by reactive oxygen species in the photoexcitation process severely limit catalytic efficiency. In chloroplast, enzymatic CO reduction and photoexcitation are compartmentalized by the thylakoid membrane, which protects enzymes from photodamage, while the tightly integrated photosystem facilitates electron transfer, promoting photocatalysis. By mimicking this strategy, we constructed a novel functionally compartmental inorganic photocatalyst-enzyme system for CO reduction to formate. To accomplish efficient electron transfer, we first synthesized an integrated artificial photosystem by conjugation of the cocatalyst (a Rh complex) onto thiophene-modified CN (TPE-CN), demonstrating an NADH regeneration rate of 9.33 μM·min, 2.33 times higher than that of a homogeneous counterpart. The enhanced NADH regeneration activity was caused by the tightly conjugated structure of the artificial photosystem, enabling rapid electron transfer from TPE-CN to the Rh complex. To protect formate dehydrogenase (FDH) from photoinduced deactivation, FDH was encapsulated into MAF-7, a metal-organic framework (MOF) material, to compartmentalize FDH from the toxic photoexcitation process, similar to the function of the thylakoid membrane. Moreover, the triazole linkers of MAF-7 possess both hydrophilicity and pH-buffering capacity providing a stable microenvironment for FDH, which could enhance enzyme stability in photosynthesis. The synergy between the enhanced electron transfer of TPE-CN for NADH cofactor regeneration and MOF-protection of the redox enzyme enables the construction of a functionally compartmental inorganic photocatalyst-enzyme association system, promoting CO photoconversion to formic acid with a yield of 16.75 mM after 9 h of illumination, 3.24 times greater than that of the homogeneous reaction counterpart.

摘要

无机光催化剂-酶系统是光还原 CO 为高附加值化学品和燃料的重要平台。然而,在光激发过程中,电子转移动力学差和活性氧物种对酶的失活严重限制了催化效率。在叶绿体中,酶促 CO 还原和光激发通过类囊体膜进行分隔,类囊体膜保护酶免受光损伤,而紧密整合的光系统促进电子转移,从而促进光催化。通过模拟这种策略,我们构建了一种新型的功能性分隔无机光催化剂-酶系统,用于 CO 还原为甲酸盐。为了实现有效的电子转移,我们首先通过将助催化剂(一种 Rh 配合物)接枝到噻吩修饰的 CN(TPE-CN)上来合成集成的人工光合作用系统,证明 NADH 的再生速率为 9.33 μM·min,比均相体系高 2.33 倍。人工光合作用系统的紧密共轭结构导致了 NADH 再生活性的增强,使电子能够从 TPE-CN 快速转移到 Rh 配合物。为了保护甲酸脱氢酶(FDH)免受光诱导失活,FDH 被包裹在 MAF-7 中,一种金属有机骨架(MOF)材料,将 FDH 与有毒的光激发过程隔离开来,类似于类囊体膜的功能。此外,MAF-7 的三唑连接体具有亲水性和 pH 缓冲能力,为 FDH 提供了稳定的微环境,这可以增强酶在光合作用中的稳定性。TPE-CN 增强的电子转移对 NADH 辅助因子再生和 MOF 对氧化还原酶的保护之间的协同作用,促进了 CO 的光转化为甲酸,在 9 小时的光照后,产量为 16.75 mM,比均相反应高 3.24 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验